Background And Purpose: Pathogenic variants in the gene cause a distinctive arterial phenotype that has recently been described to be associated with brain malformation. Our objective was to further characterize gyral abnormalities in patients with pathogenic variants as per the 2020 consensus recommendations for the definition and classification of malformations of cortical development.
Materials And Methods: We performed a retrospective, multicentric review of patients with proved pathogenic variants, searching for the presence of malformations of cortical development. A consensus read was performed for all patients, and the type and location of cortical malformation were noted in each. The presence of the typical arterial phenotype as well as demographic and relevant clinical data was obtained.
Results: We included 13 patients with pathogenic variants (Arg179His mutation, = 11, and Arg179Cys mutation, = 2). Ninety-two percent (12/13) of patients had peri-Sylvian dysgyria, 77% (10/13) had frontal dysgyria, and 15% (2/13) had generalized dysgyria. The peri-Sylvian location was involved in all patients with dysgyria (12/12). All patients with dysgyria had a characteristic arterial phenotype described in pathogenic variants. One patient did not have dysgyria or the characteristic arterial phenotype.
Conclusions: Dysgyria is common in patients with pathogenic variants, with a peri-Sylvian and frontal predominance, and was seen in all our patients who also had the typical arterial phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757559 | PMC |
http://dx.doi.org/10.3174/ajnr.A7364 | DOI Listing |
J Mol Diagn
January 2025
Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States. Electronic address:
Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).
View Article and Find Full Text PDFAnn Endocrinol (Paris)
January 2025
Univ. Lille, Inserm, CHU Lille, U1286 - Infinite, F-59045 Lille Cedex, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France. Electronic address:
Around 10% of cases of primary hyperparathyroidism are thought to be genetic in origin, some of which are part of a syndromic form such as multiple endocrine neoplasia types 1, 2A or 4 or hyperparathyroidism-jaw tumor syndrome, while the remainder are cases of isolated familial primary hyperparathyroidism. Recognition of these genetic forms is important to ensure appropriate management according to the gene and type of variant involved, but screening for a genetic cause is not justified in all patients presenting primary hyperparathyroidism. The indications for genetic analysis have made it possible to propose a decision tree that takes into account whether the presentation is familial or sporadic, syndromic or isolated, patient age, and histopathological type of parathyroid lesion.
View Article and Find Full Text PDFJ Med Virol
January 2025
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Mathematical models of viral dynamics are crucial in understanding infection trajectories. However, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load data often includes limited sparse observations with significant heterogeneity. This study aims to: (1) understand the impact of patient characteristics in shaping the temporal viral load trajectory and (2) establish a data collection protocol (DCP) to reliably reconstruct individual viral load trajectories.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
Background: Sengers syndrome is an autosomal recessive mitochondrial DNA depletion syndrome characterized by hypertrophic cardiomyopathy, congenital cataracts, skeletal myopathy, exercise intolerance, and lactic acidosis. Dysfunction of acylglycerol kinase (AGK) is responsible for the disease, and several AGK gene variants have been reported.
Methods: We employed a comprehensive genomic analysis approach, including whole-genome sequencing and RNA sequencing, combined with various bioinformatics tools.
Neuropathol Appl Neurobiol
February 2025
Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain.
Aims: Sarcoendoplasmic reticulum Ca-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!