AI Article Synopsis

  • A portable electrochemical sensor was developed to detect pesticide residues, specifically carbendazim (CBZ), in various samples such as biological materials, water, and vegetables.
  • The sensor utilized a gadolinium oxide/functionalized carbon nanosphere composite on a glassy carbon electrode, showing strong electrocatalytic activity and sensitivity for CBZ detection due to its high electrochemical properties.
  • The sensor demonstrated a wide detection range (0.5-552 μM), a low level of detection (0.009 μM L), and excellent recovery rates (96.27-99.44%) in real samples, making it a practical solution for monitoring pesticide residues.

Article Abstract

In this study, we developed a portable electrochemical sensor for realizing the pesticide residue in biological, environmental, and vegetable samples. A lower concentration of carbendazim pesticide (CBZ) was electrochemically exposed by newly developed gadolinium oxide/functionalized carbon nanosphere modified glassy carbon electrode (GdO/f-CNS/GCE). The GdO/f-CNS composite was prepared by two-pot ultrasonic-assisted co-precipitation method and characterized by various physicochemical analytical techniques. In addition, the electrocatalytic activity of the composite was investigated by cyclic voltammetry (CV) towards the detection of CBZ. Besides, the GdO/f-CNS/GCE exhibited excellent electrocatalytic capability and sensitivity towards the oxidation of CBZ due to its high electrochemical active surface area, good conductivity, and fast electron transfer ability. A wide linear range of CBZ (0.5-552 μM) was attained with a low level of detection (LOD) of 0.009 μM L and exceptional stability of 93.41%. The proposed sensor exemplifies practical feasibility in blood serum, water, and vegetable samples with an remarkable recovery range of 96.27-99.44% and primary current response of ∼91% after 15 days.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.123028DOI Listing

Publication Analysis

Top Keywords

carbon nanosphere
8
vegetable samples
8
impact gadolinium
4
gadolinium oxide
4
oxide functionalized
4
functionalized carbon
4
nanosphere portable
4
portable advanced
4
advanced electrocatalyst
4
electrocatalyst pesticide
4

Similar Publications

Conversion-type selenium cathodes are considered a highly promising alternative to sulfur cathodes due to their high conductivity and similar theoretical capacity. However, stress-diffusion and shuttle effects during the conversion process remain significant challenges that urgently need to be addressed. Herein, a composite matrix of MoSe anchored on the surface of N-doped hollow mesoporous carbon nanospheres (NHMCNS) was designed as a Se host to construct Se/C cathodes (Se/MoSe@NHMCNS).

View Article and Find Full Text PDF

Regulating the Atomic Active Center by Covalent Organic Framework-Derived Photothermal Nanozyme to Arm Self-Gelling Powder for Bacterial Wound Healing.

ACS Nano

December 2024

Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering, Donghua University, Shanghai 201600, China.

Creating simple methods to produce antioxidant nanozymes with clear structure-activity relationships, particularly aiming to improve disinfection and create practical drug formulations for bacterial wound healing, remains a crucial challenge. Herein, we synthesized iron-loaded covalent organic framework nanospheres, which were then controllably transformed into a carbon-based nanozyme with both iron single atoms and iron clusters through simple pyrolysis. We discovered that the gradual growth of iron clusters significantly boosted the nanozyme's adsorption onto the substrate and electron transfer, greatly influencing its activity.

View Article and Find Full Text PDF

In Situ Electron Tomography Insights into the Curvature Effect of a Concave Surface on Fe Single Atoms for Durable Oxygen Reaction.

Adv Sci (Weinh)

December 2024

Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China.

Curvature-induced interfacial electric field effects and local strain engineering offer a powerful approach for optimizing the intrinsic catalytic activity of single-atom catalysts (SACs). Investigations into the surface curvature on SACs are still ongoing, and the impact of the concave surface is often overlooked. In this work, theoretical calculations indicate that curved surfaces, particularly those with concavity, can optimize the electronic structures of single Fe sites and facilitate the reductive release of *OH.

View Article and Find Full Text PDF

Photonic Band Gap Engineering by Varying the Inverse Opal Wall Thickness.

Int J Mol Sci

December 2024

Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary.

We demonstrate the band gap programming of inverse opals by fabrication of different wall thickness by atomic layer deposition (ALD). The opal templates were synthesized using polystyrene and carbon nanospheres by the vertical deposition method. The structure and properties of the TiO inverse opal samples were investigated using Scanning Electron Microscope (SEM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD) and Finite Difference Time Domain (FDTD) simulations.

View Article and Find Full Text PDF

Covalent organic framework derived single-atom copper nanozymes for the detection of amyloid-β peptide and study of amyloidogenesis.

Anal Bioanal Chem

December 2024

College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.

Sensitive and accurate detection of the amyloid-β (Aβ) monomer is of fundamental significance for early diagnosis of Alzheimer's disease (AD). Herein, inspired by the specific Cu-Aβ monomer coordination, a cutting-edge colorimetric assay based on single-atom Cu anchored N-doped carbon nanospheres (Cu-NCNSs) was developed for Aβ monomer detection and an amyloidogenesis study. By directly pyrolyzing Cu-incorporated covalent organic frameworks (COFs), the resulting Cu-NCNSs with a high loading of Cu (8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: