Currently, the combining photodynamic therapy (PDT) with photothermal therapy (PTT) modalities based on a single near infrared (NIR) laser irradiation and highly selective internalization still remain a challenge. Herein, a hierarchical dual-responsive cleavable nanosystem for synergetic NIR triggered PDT/PTT is reported. The engineered nanoplatform (Au NRs/Cur/UCNPs@PBE) is designed by loading curcumin (Cur, photosensitizer) on gold nanarods (Au NRs) to build PDT/PTT therapy system, which was encapsulated outside with upconversion nanoparticles (UCNPs) and then modified with phenylboronic double ester (PBE). The pH and ROS-responsive feature made Au NRs/Cur/UCNPs@PBE provide a fundamental structural evolution and improve the specificity and intracellular accumulation to tumors. Au NRs/Cur/UCNPs@PBE exhibited significant PDT and PTT efficiency against two type melanoma cells due to upconversion nanoparticles and Au NRs induced by an 808 nm laser. Notably, the platform can mainly activate apoptosis and partial ferroptosis to achieve the synergistic PDT/PTT, furthermore, the integrated PDT with PTT using Au NRs/Cur/UCNPs@PBE showcased a great antitumor efficacy in vivo superior to the other alone treatment. Our findings highlight that this intelligent nanoagents for synergistic phototherapy facilitate enhanced fighting melanoma and provide a promising strategy for melanoma theranostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2021.112524 | DOI Listing |
Nat Commun
January 2025
Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS).
View Article and Find Full Text PDFJ Biomater Appl
November 2023
Key Laboratory of Functional Polymer Materials of MOE, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
Conventional cancer treatments are highly toxic and ineffective; therefore, it is essential to develop less toxic and minimally invasive treatment methods. A pH/Near Infra-red (NIR) dual-responsive, nano-injectable smart hydrogel was fabricated by incorporating CuS nanoparticles into the hydrogel networks formed by a random copolymer of N-isopropylacrylamide (NIPAM) and double-bond functionalized uracil. Microstructural characterizations of synthesized polymer and hydrogels were carried out using transmission electron microscope (TEM), scanning electron microscope (SEM), nuclear magnetic resonance (NMR) and fourier transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFAdv Mater
March 2024
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported.
View Article and Find Full Text PDFSmall
June 2023
National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
The advancement in smart devices and soft robotics necessitates the use of multiresponsive soft actuators with high actuation stroke and stable reversibility for their use in real-world applications. Here, this work reports a magnetically and electrically dual responsive soft actuator based on neodymium and iron bimetallic organic frameworks (NdFeMOFs@700). The ferromagnetic NdFeMOFs@700 exhibits a porous carbon structure with excellent magnetization saturation (166.
View Article and Find Full Text PDFBiomacromolecules
December 2022
Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou510640, China.
Acute kidney injury (AKI) has been a global public health concern leading to high patient morbidity and mortality in the world. Nanotechnology-mediated antioxidative therapy has facilitated the treatment of AKI. Herein, a hierarchical curcumin-loaded nanodrug delivery system (NPS@Cur) was fabricated for antioxidant therapy to ameliorate AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!