AI Article Synopsis

Article Abstract

Plasma-based strategies offer several advantages for developing antibacterial biomaterials and can be used directly or combined with other surface modification techniques. Direct plasma strategies can be classified as plasma surface modifications that derive antibacterial property by tailoring surface topography or surface chemistry. Nano patterns induced by plasma modification can exhibit antibacterial property and promote the adhesion and proliferation of mammalian cells, creating antibacterial and biocompatible surfaces. Antibacterial effect by tailoring surface chemistry via plasma can be attained by either creating bacteriostatic surfaces or bactericidal surfaces. Plasma-assisted strategies incorporate plasma processes in combination with other surface modification techniques. Plasma coating can serve as a drug-eluting reservoir and diffusion barrier. The plasma-functionalized surface can serve as a platform for grafting antibacterial agents, and plasma surface activation can improve the adhesion of polymeric layers with antibacterial properties. This article critically reviews plasma-based strategies reported in the recent literature for the development of antibacterial biomaterial surfaces. Studies using both atmospheric and low-pressure plasmas are included in this review. The findings are discussed in terms of the trends in material and precursor selection, modification stability, antibacterial efficacy, the choice of bacterial strains tested, cell culture findings, critical aspects of in vitro performance testing and in vivo experimental design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112474DOI Listing

Publication Analysis

Top Keywords

plasma surface
12
surface modification
12
antibacterial
10
plasma
8
antibacterial biomaterials
8
plasma-based strategies
8
surface
8
modification techniques
8
antibacterial property
8
tailoring surface
8

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).

View Article and Find Full Text PDF

Cold plasma generated by dielectric barrier discharge (DBD) and DBD combined with nebulized liquid microdroplets to generate plasma-activated mist (PAM) have shown the potential as a surface decontamination method for the food industry. The objective of this research was to measure the microbial inactivation caused by DBD and by PAM on tryptic soy agar (TSA) and on glass slides and to determine the efficacy of PAM on selected surfaces having different surface topographies. Tryptic soy agar in Petri dishes and on glass slides (surface roughness Pq = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!