Boronic derivatization-based strategy for monoacylglycerol identification, isomer annotation and quantification.

Anal Chim Acta

Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China; Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu, 210009, China. Electronic address:

Published: January 2022

Monoacylglycerols (MAGs) are important signaling molecules involved in various diseases. However, it is challenge for direct detection of MAGs and isomers. Additionally, difficulties in isomer annotation hinders the comprehensive profiling of MAGs and hampers revealing isomers' contributions to diseases. Herein, a boronic derivatization-based strategy was developed for unambiguous identification, isomer annotation and quantification of MAGs in biological samples. 3-Nitrophenylboronic acid was selected as the derivatization reagent owing to its rapid and selective reactivity toward cis-diol moiety. First, a prediction model was established for MAG identification by the integration of m/z, isotopic distribution of boron, and retention time attributed by the carbon chain length and number of double bonds, which solved the difficulty of obtaining MAG standards. In addition, the designed derivatization reaction enabled the capture of thermally unstable sn-2 MAG isomers to ensure the chromatographic separation and direct MS detection. What's more, distinguished fragmentation patterns were discovered for derivatized MAG isomers, which allowed a novel and unambiguous isomer annotation. Furthermore, by considering the availability of standards, the quantification of MAGs was based on the development of calibration curves or relative quantification by internal standard. On this basis, the developed strategy was utilized for MAG identification and quantification in breast cancer samples, which suggested that MAGs could be regarded as potential biomarkers in breast cancer diagnosis or as indicators to trace the process of chemotherapy. It also helped make the puzzle complete by revealing that only one single isomer associated with the onset of disease was possible, instead of regarding them as a whole. Therefore, the boronic derivatization-based strategy facilitated the unambiguous identification, annotation and quantification of MAGs and isomers in biofluids, and would be beneficial for the mechanism studies of related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.339233DOI Listing

Publication Analysis

Top Keywords

isomer annotation
16
boronic derivatization-based
12
derivatization-based strategy
12
annotation quantification
12
quantification mags
12
identification isomer
8
direct detection
8
mags isomers
8
unambiguous identification
8
mag identification
8

Similar Publications

Leaves of tomato plants contain various glandular trichomes that produce a wide range of metabolic products including acylsugars, which may serve as a defense mechanism against various insect pests. Acylsugars exhibit significant structural diversity, differing in their sugar cores, acylated positions, and type of acyl chains. This work demonstrated a comprehensive approach using multidimensional separation techniques, specifically liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS), for structural characterization, and the discrimination of different tomato plants (one cultivar and five accessions) was demonstrated using tomato leaf extracts; six genotypes from five species of were represented.

View Article and Find Full Text PDF
Article Synopsis
  • * Accurate measurement of these APLs, particularly their specific fatty acid connections, remains difficult with existing methods.
  • * The study introduces a new approach using isotopic labeling and high-resolution ion mobility MS to effectively quantify APL -isomers, revealing their changes in Alzheimer’s disease models, thus paving the way for better understanding of their role in health and disease.
View Article and Find Full Text PDF

Rationale: The emergence of new mass spectrometry (MS) dissociation methods has highlighted lipid isomers as new biomarkers. Only a few commercial methods without derivatization are available to characterize phosphatidylcholines (PCs) at the isomeric level. We propose to use electron transfer dissociation (ETD) as a method to determine the position of both double bonds and stereo numbering (sn) on glycerol for PC species.

View Article and Find Full Text PDF

Systematically identifying the chemical constituents in complex matrices is a challenge due to the inherent characteristics of compounds. The combination of liquid chromatography-tandem mass spectrometry (LC-MS) and classical molecular networking (CLMN) is a powerful technology for annotating small molecules. However, the low coverage from inappropriate acquisition modes and the inseparability of isomeric compound nodes still hinders the comprehensive metabolite characterization.

View Article and Find Full Text PDF

Background: Specialised anti-herbivory metabolites are abundant in the solanaceous genus . These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the genus, but information from the molecular model species , , and the tree tobacco is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!