: Tadpole tail develops from the tailbud, an apparently homogenous mass of cells at the posterior of the embryo. While much progress has been made in understanding the origin and the induction of the tailbud, the subsequent outgrowth and differentiation have received much less attention, particularly with regard to global gene expression changes. : By using RNA-seq with SMRT and further analyses, we report the transcriptome profiles at four key stages of tail development, from a small tailbud to the onset of feeding (S18, S19, S21 and S28) in , an anuran with a number of advantages for developmental and genetic studies. : We obtained 48,826 transcripts and discovered 8807 differentially expressed transcripts (DETs, q < 0.05) among these four developmental stages. We functionally classified these DETs by using GO and KEGG analyses and revealed 110 significantly enriched GO categories and 6 highly enriched KEGG pathways (Protein digestion and absorption; ECM-receptor interaction; Pyruvate metabolism; Fatty acid degradation; Valine, leucine and isoleucine degradation; and Glyoxylate and dicarboxylate metabolism) that are likely critically involved in developmental changes in the tail. In addition, analyses of DETs between any two individual stages demonstrated the involvement of distinct biological pathways/GO terms at different stages of tail development. Furthermore, the most dramatic changes in gene expression profile are those between S28 and any of the other three stages. The upregulated DETs at S28 are highly enriched in "myosin complex" and "potassium channel activity", which are important for muscle contraction, a critical function of the tail that the animal needs by the end of embryogenesis. Additionally, many DETs and enriched pathways discovered here during tail development, such as HDAC1, Hes1 and Hippo signaling pathway, have also been reported to be vital for the tissue/organ regeneration, suggesting conserved functions between development and regeneration. : The present staudy provides a golbal overview of gene expression patterns and new insights into the mechanism involved in anuran tail development and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.52586/5004DOI Listing

Publication Analysis

Top Keywords

tail development
20
gene expression
12
tail
8
stages tail
8
highly enriched
8
development regeneration
8
development
6
stages
5
dets
5
transcriptome profiling
4

Similar Publications

Intelligent control algorithms for posture and height control of four-leg hydraulic supports.

Sci Rep

January 2025

School of Emergency Management and Safety Engineering, China University of Mining & Technology, Beijing, 100083, China.

To address limitations of traditional inclinometers and height sensors in determining the posture and support height of hydraulic supports in coal mining, we propose a novel method predicated on travel measurements of the leg and tail beam cylinders. This method calculates the posture and height of hydraulic supports in mechanized mining. By conducting meticulous kinematic analysis of the hydraulic supports, a skeleton model of the main structural parameters of the hydraulic support was constructed.

View Article and Find Full Text PDF

Collaborative performance of enzymatic saccharification and organic pollutant degradation from PHP (phosphoric acid coupled with hydrogen peroxide) pretreatment of lignocellulose.

J Environ Manage

January 2025

College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.

As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model.

CNS Neurosci Ther

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.

View Article and Find Full Text PDF

Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!