This work evaluated the accuracy of 3D models generated by a DJI Mavic Pro drone with 3DF Zephyr software photogrammetry. The models were compared to models generated by a Trimble X7 laser scanner. The tests were performed in the outdoor area of a vehicle parking inbound to simulate the characteristics of a crime scene. Ground control points (GCPs) were distributed in ten positions within the surroundings. In manual flight, the drone performed nadiral photographs from one side to the other side and with an elliptical 45° center pointed. Three altitudes where tested: 10 m, 20 m and 40 m. The Trimble X7 laser scanner performed six scans and generated one set of point clouds. Drone photogrammetry returned eligible data for distances of 20 m and 40 m with errors of ~0.25 mm. To increase the overlay in the photogrammetry procedure, all photographs from distances of 10-40 m were processed, returning an error of ~0.53 mm. The results of the measured distances, which were manually picked from the GCPs, from the 3D-scanned model and photogrammetric 3D models were then statistically analyzed. The Trimble X7 laser scanner showed an average error of 3 cm, which was approximately equivalent to the results obtained with all images or when using a known scale value for the drone photographs, presenting no significant differences among the evaluated methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2021.111100 | DOI Listing |
J Dent
January 2025
Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland; School of Dentistry, Federal University of Goiàs, Goiania, Brazil; Department of Reconstructive Dentistry, Division of Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
Objective: This study aimed to explore the feasibility and reliability of measuring the vertical dimension of occlusion/rest (OVD/RVD) on 3D facial scans of edentulous patients.
Methods: Nineteen edentulous participants rehabilitated with complete removable dental prostheses (CDs) participated in this study. Analog measurements (control) were obtained directly on the face for each participant with the jaws positioned at the rest position (without CDs, RVD) and at central occlusion (OVD), between the facial landmarks: Glabella (G) and Soft Pogonion (SP), Pronasale (PN) and SP, and Subnasale (SN) and SP.
Microcirculation
January 2025
Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
Objective: Cerebral blood flow (CBF) decline is increasingly recognized as an area of importance for targeting neurodegenerative disorders, yet full understanding of the mechanisms that underlie CBF changes are lacking. Animal models are crucial for expanding our knowledge as methods for studying global CBF and neurovascular coupling in humans are limited and require expensive specialized scanners.
Methods: Use of appropriate animal models can increase our understanding of cerebrovascular function, so we have combined chronic cranial windows with in vivo two-photon and laser speckle microscopy and ex vivo capillary-parenchymal arteriole (CaPA) preparations.
J Esthet Restor Dent
January 2025
Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany.
Objective: Investigation of the mechanical properties of occlusal veneers made from zirconia with varying translucency, bonded to different tooth substrates.
Materials And Methods: Sixty-four extracted molars were divided into two groups: preparation within enamel (E) or extending into dentin (D). Veneers were milled from four zirconia ceramics (n = 8): 5Y-TZP (HT), a multilayer of 5 and 3Y-TZP (GT), 3Y-TZP (LT), and 4Y-TZP (MT).
MethodsX
June 2025
Department of Remote Sensing and GIS, Science and Research Branch, Islamic Azad University, Tehran, Iran.
The semi-automatic and automatic extraction of land features such as buildings, trees, and roads using aerial laser scan data is crucial in land use change studies and urban management. This research introduces the "BTR" extractor, a novel software package designed to enhance classification accuracy of phenomena identified in the super points obtained from aerial laser scanners. Our method focuses on:-Comparing classification methods using airborne laser scanning data.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Dunhuang Gobi Desert Ecology and Environment Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
The Desert oasis ecotone (DOE) protects the oasis from wind and sand intrusion, thereby playing a crucial role in controlling desertification. However, there is limited knowledge about how DOE functions in windproof and sand-fixation. Therefore this study employs a three-dimensional (3D) laser scanner to monitor surface accumulation and erosion, and through field observations, collects data on wind profiles, grain size, and sand transport rates to uncover the role of DOE in aeolian sand protection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!