Proteomic quantitative study of dorsal root ganglia and sciatic nerve in type 2 diabetic mice.

Mol Metab

Institute of Neurosciences, Univ. Autònoma de Barcelona, Spain; Department of Biochemistry and Molecular Biology, Univ. Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain; Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. Electronic address:

Published: January 2022

Objective: Peripheral neuropathy is the most common and debilitating complication of type 2 diabetes, leading to sensory loss, dysautonomia, hyperalgesia, and spontaneous noxious sensations. Despite the clinical and economic burden of diabetic neuropathy, no effective treatment is available. More preclinical research must be conducted in order to gain further understanding of the aetiology of the disease and elucidate new therapeutic targets.

Methods: The proteome of lumbar dorsal root ganglia and sciatic nerve of BKS-db/db mice, which contain a mutation of the leptin receptor and are an established type 2 diabetes model, was characterized for the first time by tandem mass tag labelling and mass spectrometry analysis.

Results: Proteomic analysis showed differentially expressed proteins grouped into functional clusters in db/db peripheral nerves compared to control mice, underlining reduced glycolytic and TCA cycle metabolism, higher lipid catabolism, upregulation of muscle-like proteins in DRG and downregulation in SCN, increased cytoskeleton-related proteins, a mild dysregulation of folding chaperones, activation of acute-phase and inflammatory response, and alterations in glutathione metabolism and oxidative stress related proteins.

Conclusions: Our data validate previous transcriptomic and metabolomic results and uncover new pathways altered in diabetic neuropathy. Our results point out that energetic deficiency could represent the main mechanism of neurodegeneration observed in diabetic neuropathy. These findings may provide important information to select appropriate targets to develop new therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717603PMC
http://dx.doi.org/10.1016/j.molmet.2021.101408DOI Listing

Publication Analysis

Top Keywords

diabetic neuropathy
12
dorsal root
8
root ganglia
8
ganglia sciatic
8
sciatic nerve
8
type diabetes
8
proteomic quantitative
4
quantitative study
4
study dorsal
4
nerve type
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!