Impacts of chemical degradation of levoglucosan on quantifying biomass burning contribution to carbonaceous aerosols: A case study in Northeast China.

Sci Total Environ

Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Published: May 2022

Biomass burning (BB) is an important source of carbonaceous aerosols in Northeast China (NEC). Quantifying the original contribution of BB to organic carbon (OC) [BB-OC] can provide an essential scientific information for the policy-makers to formulate the control measures to improve the air quality in the NEC region. Daily PM samples were collected in the rural area of Changchun city over the NEC region from May 2017 to May 2018. In addition to carbon contents, BB tracers (e.g., levoglucosan and K, defined as potassium from BB) were also determined, in order to investigate the relative contribution of BB-OC. The results showed that OC was the dominant (28%) components of PM during the sampling period. Higher concentrations of OC, levoglucosan, and K were observed in the autumn followed by the winter, spring, and summer, indicating that the higher BB activities during autumn and winter in Changchun. By using the Bayesian mixing model, it was found that burning of crop residues were the dominant source (65-79%) of the BB aerosols in Changchun. During the sampling period, the aging in air mass (AAM) ratio was 0.14, indicating that ~86% of levoglucosan in Changchun was degraded. Without considering the degradation of levoglucosan in the atmosphere, the BB-OC ratios were 23%, 28%, 7%, and 4% in the autumn, winter, spring, and summer, respectively, which were 1.4-4.8 time lower than those (14-42%) with consideration of levoglucosan degradation. This illustrated that the relative contribution of BB to OC would be underestimated (~59%) without considering degradation effects of levoglucosan. Although some uncertainty was existed in our estimation, our results did highlight that the control of straw burning was an efficient way to decrease the airborne PM, improving the air quality in the NEC plain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152007DOI Listing

Publication Analysis

Top Keywords

autumn winter
12
degradation levoglucosan
8
biomass burning
8
carbonaceous aerosols
8
northeast china
8
air quality
8
quality nec
8
nec region
8
relative contribution
8
sampling period
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!