The β-hairpin is a structural element of native proteins, but it is also a useful artificial scaffold for finding lead compounds to convert into peptidomimetics or non-peptide structures for drug discovery. Since linear peptides are synthetically more easily accessible than cyclic ones, but are structurally less well-defined, we propose XWXWXpPXK(/R)X(R) as an acyclic but still rigid β-hairpin scaffold that is robust enough to accommodate different types of side chains, regardless of the secondary-structure propensity of the X residues. The high conformational stability of the scaffold results from tight contacts between cross-strand cationic and aromatic side chains, combined with the strong tendency of the d-Pro-l-Pro dipeptide to induce a type II' β-turn. To demonstrate the robustness of the scaffold, we elucidated the NMR structures and performed molecular dynamics (MD) simulations of a series of peptides displaying mainly non-β-branched, poorly β-sheet-prone residues at the X positions. Both the NMR and MD data confirm that our acyclic β-hairpin scaffold is highly versatile as regards the amino-acid composition of the β-sheet face opposite to the cationic-aromatic one.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299858 | PMC |
http://dx.doi.org/10.1002/cbic.202100604 | DOI Listing |
Aesthetic Plast Surg
January 2025
Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Background: External volume expansion (EVE) devices has been demonstrated to enhance the survival of fat grafts. Decellularized adipose tissue (DAT) serves as a promising scaffold for adipose regeneration; however, the effectiveness of adipose regeneration in DAT remains limited, and the underlying mechanisms of its regeneration require further investigation.
Objective: This study explores the potential of EVE technology to enhance DAT-mediated adipogenesis by facilitating cellular recruitment and establishing a microenvironment conducive to adipose tissue regeneration.
Chem Pharm Bull (Tokyo)
January 2025
Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd.
Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey. Electronic address:
Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:
Polyelectrolyte complexes (PECs) are self-assembled systems formed from oppositely charged polymers, used to create hydrogels for cell culture. This work was aimed at additive manufacturing 3D hydrogels made of a PEC between chitosan (Cs) and alginate, as well as their investigation for in vitro 3D ovarian cancer modeling. PEC hydrogels stability in cell culture medium demonstrated their suitability for long-term cell culture applications.
View Article and Find Full Text PDFJ Org Chem
January 2025
Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China.
Herein, we report a Cu-DTBP-catalyzed [3 + 2] cycloaddition reaction between 1-(2-oxo-2-phenylethyl)--indole-3-aldehyde and arylalkene, using DMF as the solvent. Under relatively mild reaction conditions, a series of indole compounds were synthesized in moderate yields (up to 73%). This protocol features good functional group tolerance and high atom economy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!