Frequent earthquakes in strong earthquake areas pose a great threat to the safety operation of electric power facilities. There exists a pressing research need to develop an assessment method for the seismic risk of substations, i.e., the hubs of power system networks. In this study, based on Incremental Dynamic Analysis (IDA), Probabilistic Seismic Demand Model (PSDM) and reliability theory, a vulnerability model for a substation is obtained, based on considering the relationships between Peak Ground Acceleration (PGA) and four seismic damage states (complete, extensive, moderate, and slight.) via a probabilistic approach. After an earthquake, the scope of influence and PGA distribution are evaluated using information recorded by the seismic observation stations, based on using interpolation or an empirical formula for the PGA attenuation. Therefore, the seismic risk can be evaluated by combining ground motion evaluation and the pre-built vulnerability model. The Wuqia- Kashgar area of Xinjiang was selected as the study area; it is an Earthquake-prone area, and one of the starting points for new energy transmission projects in China. Under a hypothetical earthquake (MS 7.9), the seismic risk of the substations was evaluated. The results show that: this method is able to give the probabilities of the four damage states of the substations, four substations close to the epicenter only have a probability of slight damage (45%-88%) and other substations are safer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639099 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258792 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!