Objective: This thesis addresses a neglected aspect of bioinformatics research of hemifacial microsomia (HFM). Existing research stops short of prediction based on big data. This study combines multiple databases to explore underlying pathogenesis using bioinformatic approach.
Methods: The research consisted of multiple bioinformatic methods, included pathogenic genes analyses, protein-protein interaction network construction, functional enrichment, and mining target genes related miRNA, for studying pathogenic genes of HFM.
Results: Total of 140 genes were identified as potential genes in the study. The protein-protein interaction networks for pathogenic genes were constructed, which contained 138 nodes and 243 edges with RAF1, MAP2K1, MAP2K2, MAPK3, MAPK1, EGFR, BRAF, LMNA, ESPR1, and SFN as the hub genes. These genes were discovered significantly enriched in MAPK pathway. Besides, the whole of interactions between miRNAs and the top 5 hub genes were revealed.
Conclusions: Our results indicated that occurrence of HFM is attributed to a variety of genes. Furthermore, the interactions of pathogenic genes were further elucidated by using bioinformatics approach. It reveals the MAPK pathway play an essential role in its pathogenesis. It may provide a novel perspective on better understanding the pathogenesis and more accurate early screening of HFM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SCS.0000000000008164 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University Medical College, Shanghai, China.
Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.
Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Biological Sciences, Minnesota State University Mankato, Mankato, Minnesota, USA.
Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!