Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to determine whether stimulation of sacral spinal nerve roots can induce defecation in cats. In anesthetized cats, bipolar hook electrodes were placed on the S1-S3 dorsal and/or ventral roots. Stimulus pulses (1-50 Hz, 0.2 ms) were applied to an individual S1-S3 root to induce proximal/distal colon contractions and defecation. Balloon catheters were inserted into the proximal and distal colon to measure contraction pressure. Glass marbles were inserted into the rectum to demonstrate defecation by videotaping the elimination of marbles. Stimulation of the S2 ventral root at 7 Hz induced significantly ( < 0.05) larger contractions (32 ± 9 cmHO) in both proximal and distal colon than stimulation of the S1 or S3 ventral root. Intermittent (5 times) stimulation (1 min on and 1 min off) of both dorsal and ventral S2 roots at 7 Hz produced reproducible colon contractions without fatigue, whereas continuous stimulation of 5-min duration caused significant fatigue in colon contractions. Stimulation (7 Hz) of both dorsal and ventral S2 roots together successfully induced defecation that eliminated 1 or 2 marbles from the rectum. This study indicates the possibility to develop a novel neuromodulation device to restore defecation function after spinal cord injury using a minimally invasive surgical approach to insert a lead electrode via the sacral foramen to stimulate a sacral spinal root. This study in cats determined the optimal stimulation parameters and the spinal segment for sacral spinal root stimulation to induce colon contraction. The results have significant implications for design of a novel neuromodulation device to restore defecation function after spinal cord injury (SCI) and for optimizing sacral neuromodulation parameters to treat non-SCI people with chronic constipation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00269.2021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!