AI Article Synopsis

  • Many studies have looked at how different variants of SARS-CoV-2 affect the body's neutralizing antibodies, especially after these variants become the dominant strains.
  • This research highlights that the virus can undergo multiple mutations at once in the receptor binding domain (RBD), making it harder for antibodies, from vaccines or treatments, to neutralize the virus.
  • Additionally, a specific antibody was found to neutralize various variants, but the virus can still develop ways to evade this by adding sugar molecules to its structure, suggesting that escape variants will keep emerging as SARS-CoV-2 evolves.

Article Abstract

Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127715PMC
http://dx.doi.org/10.1126/science.abl6251DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 receptor
8
receptor binding
8
binding domain
8
structural basis
4
basis continued
4
antibody
4
continued antibody
4
antibody evasion
4
sars-cov-2
4
evasion sars-cov-2
4

Similar Publications

The persistence or emergence of long-term symptoms following resolution of primary SARS-CoV-2 infection is referred to as long COVID or post-acute sequelae of COVID-19 (PASC). PASC predominantly affects the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Among these, the central nervous system (CNS) is significantly impacted, leading to a spectrum of symptoms, including fatigue, headaches, brain fog, cognitive impairment, anosmia, hypogeusia, neuropsychiatric symptoms, and peripheral neuropathy (neuro-PASC).

View Article and Find Full Text PDF

In vitro to clinical efficacy: Neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 strains.

J Infect Chemother

December 2024

Department of Infectious Diseases, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan. Electronic address:

Introduction: Neutralizing antibodies have been approved for coronavirus disease 2019 (COVID-19) treatment; however, no study has clarified the link among their neutralizing effect in vitro, the period of infectious virus shedding, and symptoms in the acute phase. Here, we aimed to assess the duration of virus shed and fever in patients with mild COVID-19 stratified by their characteristics and type of neutralizing antibody administered.

Methods: We evaluated the efficacy of neutralizing antibodies in terms of the duration of infectious virus excretion and fever in three groups: patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta strain treated with REGEN-CoV2 (REGN-CoV2 group) and patients infected with Omicron strain treated with S309 (S309 group) or untreated (untreated group).

View Article and Find Full Text PDF

SARS-CoV-2 remains a global threat with new sublineages posing challenges, particularly in the Philippines. Hesperidin (HD) is being studied as a potential prophylactic for COVID-19. However, the virus's rapid evolution could alter how HD binds to it, affecting its effectiveness.

View Article and Find Full Text PDF

Introduction: The coronavirus disease 2019 (COVID-19) global pandemic has been the most severe public health emergency since 2019. Currently, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the most dominant. The most prominent symptom of SARS-CoV-2 infection is respiratory.

View Article and Find Full Text PDF

Evolution of SARS-CoV-2 spike trimers towards optimized heparan sulfate cross-linking and inter-chain mobility.

Sci Rep

December 2024

Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.

The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!