Molecular adsorption to the nanoparticle surface may switch the colloidal interactions from repulsive to attractive and promote nanoparticle agglomeration. If the nanoparticles are magnetic, then their agglomerates exhibit a much stronger response to external magnetic fields than individual nanoparticles. Coupling between adsorption, agglomeration, and magnetism allows a synergy between the high specific area of nanoparticles (∼100 m/g) and their easy guidance or separation by magnetic fields. This yet poorly explored concept is believed to overcome severe restrictions for several biomedical applications of magnetic nanoparticles related to their poor magnetic remote control. In this paper, we test this concept using curcumin (CUR) binding (adsorption) to β-cyclodextrin (βCD)-coated iron oxide nanoparticles (IONP). CUR adsorption is governed by host-guest hydrophobic interactions with βCD through the formation of 1:1 and, possibly, 2:1 βCD:CUR inclusion complexes on the IONP surface. A 2:1 stoichiometry is supposed to promote IONP primary agglomeration, facilitating the formation of the secondary needle-like agglomerates under external magnetic fields and their magneto-microfluidic separation. The efficiency of these field-induced processes increases with CUR concentration and βCD surface density, while their relatively short timescale (<5 min) is compatible with magnetic drug delivery application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c02245 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia.
Nanogels (NGs) are presently the focus of extensive research because of their special qualities, including minimal particle size, excellent encapsulating efficacy, and minimizing the breakdown of active compounds. As a result, NGs are great candidates for drug delivery systems. Cross-linked nanoparticles (NPs) called stimulus-responsive NGs are comprised of synthetic, natural, or a combination of natural and synthetic polymers.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
Department of Mathematics, National Institute of Technology Uttarakhand, Srinagar, India.
As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases.
View Article and Find Full Text PDFACS Nano
January 2025
Max Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale) 06120, Germany.
Spintronic devices based on the electrical manipulation of magnetic chiral domain walls (DWs) within magnetic nanowires promise advanced memory and logic with high speed and density. However, error-free positioning of the DWs along the magnetic nanowires is challenging. Here, we demonstrate reconfigurable domain wall logic and neuronal devices based on the interaction between the DWs and local magnetic inhibitors that are placed in the proximity of the magnetic nanowire.
View Article and Find Full Text PDFPain Manag
January 2025
Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
Objectives: To systematically review and conduct a meta-analysis of studies on peripheral magnetic stimulation (PMS) for fibromyalgia (FM) treatment.
Methods: MEDLINE, EMBASE, CENTRAL, CINHAL, Web of Science, and ProQuest databases were searched from inception to July 2023 for studies in adult patients with FM treated with PMS. Studies using transcranial magnetic stimulation were excluded.
Nat Commun
January 2025
Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-, Strasbourg, France.
Electric fields represent an ideal means for controlling spins at the nanoscale and, more specifically, for manipulating protected degrees of freedom in multispin systems. Here we perform low-temperature magnetic far-IR spectroscopy on a molecular spin triangle (Fe) and provide initial experimental evidence suggesting spin-electric transitions in polynuclear complexes. The co-presence of electric- and magnetic-dipole transitions, allows us to estimate the spin-electric coupling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!