New neutralizing agents against SARS-CoV-2 and associated mutant strains are urgently needed for the treatment and prophylaxis of COVID-19. Herein, we develop a spherical cocktail neutralizing aptamer-gold nanoparticle (SNAP) to block the interaction between the receptor-binding domain (RBD) of SARS-CoV-2 and host ACE2. With the multivalent aptamer assembly as well as the steric hindrance effect of the gold scaffold, SNAP exhibits exceptional binding affinity against the RBD with a dissociation constant of 3.90 pM and potent neutralization against authentic SARS-CoV-2 with a half-maximal inhibitory concentration of 142.80 fM, about 2 or 3 orders of magnitude lower than that of the reported neutralizing aptamers and antibodies. More importantly, the synergetic blocking strategy of multivalent multisite binding and steric hindrance ensures broad neutralizing activity of SNAP, almost completely blocking the infection of three mutant pseudoviruses. Overall, the SNAP strategy provides a new direction for the development of antivirus agents against SARS-CoV-2 and other emerging coronaviruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c08226 | DOI Listing |
Front Pediatr
January 2025
Division of Neonatology, Department of Pediatrics, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand.
Background: Multisystem inflammatory syndrome in neonates (MIS-N) is a rare condition thought to be associated with prenatal exposure to maternal severe acute respiratory syndrome coronavirus 2 infection. This immune-mediated hyperinflammation has been described in neonates with multiorgan dysfunction, including cardiopulmonary, encephalopathy, coagulopathy, and vascular complications. However, renovascular complications in MIS-N are rare.
View Article and Find Full Text PDFPept Sci (Hoboken)
November 2024
Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, United States of America.
The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry.
View Article and Find Full Text PDFInt J Reprod Biomed
November 2024
Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
Background: Coronavirus disease 2019 (COVID-19) was identified in China in late December 2019 and led to a pandemic that resulted in millions of confirmed cases and deaths. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), uses distinct receptors and co-receptors to enter host cells. Vimentin has emerged as a potential co-receptor for SARS-CoV-2 due to the high level of vimentin expression in testis tissue.
View Article and Find Full Text PDFClin Respir J
January 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Objective: This study was conducted to further understand the clinical characteristics of COVID-19 associated pulmonary aspergillosis (CAPA).
Methods: In this study, we conducted a multicenter retrospective survey, which included patients with COVID-19 from five hospitals in Zhejiang, China. A total of 197 patients with COVID-19 were included in the study.
Bioorg Med Chem Lett
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, China. Electronic address:
Nucleoside analogs (NAs), as antiviral drugs, play a significant role in clinical medicine, constituting approximately 50 % of all antiviral therapies in current use. Nucleoside inhibitors function by mimicking the structure of natural nucleosides, integrating themselves into viral genetic material during replication, and subsequently inhibiting the virus's ability to reproduce. They are used to treat a variety of viral infections, including herpes simplex, hepatitis B, and acquired immunodeficiency syndrome (AIDS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!