Rationale: Adequate immunotherapies for anti-NMDAR encephalitis during pregnancy produce a relatively good clinical outcome for pregnant mothers and their infants, but there are no reports about the future growth of their babies. The damage of anti-NMDAR antibodies to early neuronal development is still unknown.
Objectives: Serum or cerebrospinal fluid from one patient with anti-NMDAR encephalitis (the index patient) and one patient with schizophrenia (the control patient) was administered to primary cultures of dissociated rat cortical neurons, and dendritic outgrowth, centrosome elimination, and branching of dendrites were investigated. For rescue experiments, serum of the index patient was replaced with normal culture media after 3 days' administration of the index patient.
Results: Serum and cerebrospinal fluid of the index patient statistically significantly impaired dendritic outgrowth of cultured rat cortical primary neurons. Serum of the index patient also statistically significantly delayed centrosome elimination. Impaired dendritic outgrowth and delayed centrosome elimination were not perfectly rescued by changing to normal culture media. Serum of the index patient also statistically significantly reduced the branching of dendrites.
Conclusions: This is the first demonstration of the damage by anti-NMDAR antibodies on early dendritic development in vitro. As a strategy to protect embryonic neurons, our findings may support the efficacy of early immunotherapy for anti-NMDAR encephalitis in pregnancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-021-06036-x | DOI Listing |
Eur J Neurosci
January 2025
Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
To summarise the clinical characteristics, radiological features, treatments and prognosis of patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) overlapped with NMDA receptor (NMDAR) encephalitis. We retrospectively analysed patients who exhibited dual positivity for MOG antibodies and NMDAR antibodies in serum/CSF from Jan 2018 to Jun 2023. Ten patients with MOGAD and NMDAR encephalitis were enrolled.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Background: Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a prevalent type of autoimmune encephalitis caused by antibodies targeting the NMDAR's GluN1 subunit. While significant progress has been made in elucidating the pathophysiology of autoimmune diseases, the immunological mechanisms underlying anti-NMDARE remain elusive. This study aimed to characterize immune cell interactions and dysregulation in anti-NMDARE by leveraging single-cell multi-omics sequencing technologies.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Background: Seizures, including status epilepticus (SE), are common in anti-NMDA receptor encephalitis (NMDARE). We aimed to describe clinical and electrographic features of patients with seizures with NMDARE, determine factors associated with SE, and describe long-term seizure outcomes.
Methods: We retrospectively identified patients with seizures in the setting of NMDARE treated at inpatient Mayo Clinic sites during the acute phase of encephalitis between October 2008 and March 2023.
Pharmaceuticals (Basel)
December 2024
School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK.
Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
: To establish a mouse model of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and assess the potential therapeutic benefits of D-serine supplementation in mitigating synaptic plasticity impairments induced by anti-NMDAR antibodies. : Anti-NMDAR antibodies were purified from cerebrospinal fluid (CSF) samples of patients diagnosed with anti-NMDAR encephalitis and verified using a cell-based assay. CSF from patients with non-inflammatory neurological diseases served as the control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!