Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle.

J Exp Biol

Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany.

Published: January 2022

Many insects benefit from bacterial symbionts that provide essential nutrients and thereby extend the hosts' adaptive potential and their ability to cope with challenging environments. However, the implications of nutritional symbioses for the hosts' defence against natural enemies remain largely unstudied. Here, we investigated whether the cuticle-enhancing nutritional symbiosis of the saw-toothed grain beetle Oryzaephilus surinamensis confers protection against predation and fungal infection. We exposed age-defined symbiotic and symbiont-depleted (aposymbiotic) beetles to two antagonists that must actively penetrate the cuticle for a successful attack: wolf spiders (Lycosidae) and the fungal entomopathogen Beauveria bassiana. While young beetles suffered from high predation and fungal infection rates regardless of symbiont presence, symbiotic beetles were able to escape this period of vulnerability and reach high survival probabilities significantly faster than aposymbiotic beetles. To understand the mechanistic basis of these differences, we conducted a time-series analysis of cuticle development in symbiotic and aposymbiotic beetles by measuring cuticular melanisation and thickness. The results reveal that the symbionts accelerate their host's cuticle formation and thereby enable it to quickly reach a cuticle quality threshold that confers structural protection against predation and fungal infection. Considering the widespread occurrence of cuticle enhancement via symbiont-mediated tyrosine supplementation in beetles and other insects, our findings demonstrate how nutritional symbioses can have important ecological implications reaching beyond the immediate nutrient-provisioning benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778805PMC
http://dx.doi.org/10.1242/jeb.243593DOI Listing

Publication Analysis

Top Keywords

predation fungal
16
fungal infection
16
aposymbiotic beetles
12
nutritional symbioses
8
protection predation
8
beetles
6
fungal
5
cuticle
5
nutritional
4
nutritional symbionts
4

Similar Publications

Unlabelled: Marine protists form complex communities that are shaped by environmental and biological ecosystem properties, as well as ecological interactions between organisms. While all of these factors play a role in shaping protistan communities, the specific ways in which these properties and interactions influence protistan communities remain poorly understood. Fourteen years and 9 months of eukaryotic amplicon (18S-V4 rRNA gene) data collected monthly at the San Pedro Ocean Time-series (SPOT) station were used to evaluate the impacts that environmental and biological factors, and protist-protist interactions had on protistan community composition.

View Article and Find Full Text PDF

Unexpected finding of encapsulating peritoneal sclerosis: mind the cocoon.

BMJ Case Rep

January 2025

Nephrology and Transplantation, Erasmus MC, Rotterdam, The Netherlands

Here, we present a fatal case of a man in his 40s with encapsulating peritoneal sclerosis (EPS). In retrospect, a spot diagnosis on the abdominal CT scan. The patient presented with progressive abdominal complaints of pain and vomiting over the last 2 months.

View Article and Find Full Text PDF

Unlabelled: has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in social motility.

View Article and Find Full Text PDF

Subcortical beetle communities interact with a wide range of semiochemicals released from different sources, including trees, fungi, and bark beetle pheromones. While the attraction of bark beetles, their insect predators, and competitors to bark beetle pheromones is commonly studied, the attraction of these beetle communities to other sources of semiochemicals remains poorly understood. We tested the attraction of bark and wood-boring beetles and their predators to host stress volatiles, fungal volatiles, and a mountain pine beetle lure in the field.

View Article and Find Full Text PDF

Structural model of a bacterial focal adhesion complex.

Commun Biol

January 2025

Laboratoire de Chimie Bactérienne (LCB) Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université-CNRS, UMR 7283, Marseille, France.

Cell movement on surfaces relies on focal adhesion complexes (FAs), which connect cytoskeletal motors to the extracellular matrix to produce traction forces. The soil bacterium Myxococcus xanthus uses a bacterial FA (bFA), for surface movement and predation. The bFA system, known as Agl-Glt, is a complex network of at least 17 proteins spanning the cell envelope.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!