A new plasmonic biosensor was developed in a planar chip-based format by coupling the plasmonic properties of gold nanoparticles (Au NPs) with the mechanical and bioadhesive features of unconventional organic thin films deposited from plasma, namely primary amine-based plasma polymer films (PPFs). A self-assembled layer of spherical Au NPs, 12 nm in diameter, was electrostatically immobilized onto optically transparent silanised glass. In the next step, the Au NP layer was coated with an 18 nm polymeric thick PPF layer the simultaneous polymerization/deposition of a cyclopropylamine (CPA) precursor performed by radio frequency discharge, both in pulsed and in continuous wave modes. The CPA PFF surface plays the dual role of an adsorbent towards negatively charged chemical species as well as an enhancer of plasmonic signals. The biosensor was tested in a proof-of-concept series of experiments of human serum albumin physisorption, and chosen as a model system for blood serum. The peculiar surface features of CPA PPF, before and after the exposure to buffered solution of fluorescein isothiocyanate-labelled human serum albumin (FITC-HSA), were investigated by a multi-technique approach, including UV-visible and X-ray photoelectron spectroscopies, atomic force microscopy, scanning electron microscopy, contact angle and surface free energy measurements. The results showed the very promising potentialities from both bioanalytical and physicochemical points of view in scrutinizing the macromolecule behavior at the biointerface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp02271gDOI Listing

Publication Analysis

Top Keywords

plasma polymer
8
polymer films
8
human serum
8
serum albumin
8
enhanced plasmonic
4
plasmonic processes
4
processes amino-rich
4
amino-rich plasma
4
films applications
4
applications biointerface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!