Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cell-laden structures are widely applied for a variety of tissue engineering applications, including tissue restoration. Cell-to-cell interactions in bioprinted structures are important for successful tissue restoration, because cell-cell signaling pathways can regulate tissue development and stem cell fate. However, the low degree of cell-cell interaction in conventional cell-laden bioprinted structures is challenging for the therapeutic application of this modality. Herein, a microfluidic device with cell-laden methacrylated gelatin (GelMa) bioink and alginate as a matrix hydrogel is used to fabricate a functional hybrid structure laden with cell-aggregated microbeads. This approach effectively increases the degree of cell-to-cell interaction to a level comparable to cell spheroids. The hybrid structure is obtained using a one-step process without the exhausting procedure. It consists of cell bead fabrication and an extrusion process for the cell-bead laden structure. Different flow rates are appropriately selected to develop cell-laden struts with homogeneously distributed cell beads for each hydrogel in the process. The hybrid struts exhibit significantly higher cellular activities than those of conventional alginate/GelMa struts, which are bioprinted using similar cell densities and bioink formulations. Furthermore, hybrid struts with adipose stem cells are implanted into mice, resulting in significantly higher myogenesis in comparison to normally bioprinted struts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202106487 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!