In this study, we examined the effects of calyculin A, a phosphatase inhibitor, on motility, protein phosphorylation, and the distribution of phospho-(Ser/Thr) PKA substrates in frozen-thawed bull spermatozoa that are actually used by most farmers for breeding. The data showed that calyculin A, which has been reported to have a positive effect on the motility of ejaculated fresh spermatozoa, distinctly decreased the motility of frozen-thawed bull spermatozoa even if a cell activator, such as caffeine, was present in the incubation medium and that the suppressive effect of calyculin A was dose-dependent and continued for at least 200 min. Immunoblot analyses revealed that de novo protein phosphorylation was not detected in spermatozoa exposed to caffeine or dbcAMP (a cell-permeable cAMP analog), while the addition of calyculin A to the medium brought about the appearance of several phosphorylated proteins at 50 kDa and 75 kDa, suggesting that 50 kDa and 75 kDa proteins, which were phosphorylated by activation of cAMP-dependent PKA, were not dephosphorylated and were accumulated in spermatozoa due to the suppression of calyculin A-sensitive protein phosphatases. Immunofluorescence microscopy revealed that calyculin A caused, alone or in conjunction with caffeine or dbcAMP, the accumulation of phospho-PKA substrates at the annulus, although caffeine or dbcAMP alone did not. This study suggested that calyculin A decreases the motility of frozen-thawed bull spermatozoa concomitant with the accumulation of phospho-(Ser/Thr) PKA substrates at the annulus of flagella.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2108/zs210046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!