AI Article Synopsis

  • Global freshwater biodiversity is facing a significant decline, and overcoming this issue requires ambitious goals and substantial funding.
  • Research and conservation efforts for freshwater ecosystems are currently underfunded compared to those for land and marine environments.
  • A global consultation has highlighted 15 key priority needs across five research areas to enhance stewardship and strengthen the management and conservation of freshwater biodiversity.

Article Abstract

Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13931DOI Listing

Publication Analysis

Top Keywords

freshwater biodiversity
20
freshwater
5
biodiversity
5
global agenda
4
agenda advancing
4
advancing freshwater
4
biodiversity global
4
global freshwater
4
biodiversity declining
4
declining dramatically
4

Similar Publications

In the era of big data and global biodiversity decline, there is a pressing need to transform data and information into findable and actionable knowledge. We propose a conceptual classification scheme for invasion science that goes beyond hypothesis networks and allows to organize publications and data sets, guide research directions, and identify knowledge gaps. Combining expert knowledge with literature analysis, we identified five major research themes in this field: introduction pathways, invasion success and invasibility, impacts of invasion, managing biological invasions, and meta-invasion science.

View Article and Find Full Text PDF

Water pollution caused by ash from grassland fires alters the molecular, biochemical, and morphological biomarkers of non-biting midge larvae.

J Hazard Mater

December 2024

Post-graduation program in Ecology and Biodiversity Conservation, Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil; Post-graduation program in Ecology. Department of Ecology and Zoology, Laboratory of Freshwater Biodiversity, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil.

The frequency and intensity of wildfires have been increasing in many parts of the world, which may result in biodiversity loss. Wildfires can devastate plant communities, generating toxic ash that pollutes watercourses through runoff. However, our understanding of the effects of ash exposure on aquatic biodiversity is still limited.

View Article and Find Full Text PDF

The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms.

View Article and Find Full Text PDF

The European Union's Biodiversity Strategy 2030, reinforced by the new Nature Restoration Law, targets restoring a minimum of 25,000 km of 'free-flowing rivers' by 2030. Central to this endeavor is the imperative to restore natural longitudinal and lateral connectivity of rivers and floodplains. Focused on scrutinizing data, methods, and tools employed in published studies from 2000 to 2023, our literature review reveals both encouraging developments and significant challenges at pan-European and regional scales to prioritize barriers for removal.

View Article and Find Full Text PDF

Functional traits and adaptation of lake microbiomes on the Tibetan Plateau.

Microbiome

December 2024

Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.

Background: Tibetan Plateau is credited as the "Third Pole" after the Arctic and the Antarctic, and lakes there represent a pristine habitat ideal for studying microbial processes under climate change.

Results: Here, we collected 169 samples from 54 lakes including those from the central Tibetan region that was underrepresented previously, grouped them to freshwater, brackish, and saline lakes, and generated a genome atlas of the Tibetan Plateau Lake Microbiome. This genomic atlas comprises 8271 metagenome-assembled genomes featured by having significant phylogenetic and functional novelty.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!