Measuring Activation Energies for Ion Transport Using Tethered Bilayer Lipid Membranes (tBLMs).

Methods Mol Biol

School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia.

Published: January 2022

Model lipid bilayers tethered to a gold substrate with molecular tethers are constructed. The conductance versus temperature dependence curve is then obtained. Here, a method to measure the activation energy for translocation of an ion through existing transmembrane pores in a sparsely tethered bilayer lipid membranes is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1843-1_6DOI Listing

Publication Analysis

Top Keywords

tethered bilayer
8
bilayer lipid
8
lipid membranes
8
measuring activation
4
activation energies
4
energies ion
4
ion transport
4
transport tethered
4
membranes tblms
4
tblms model
4

Similar Publications

Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.

View Article and Find Full Text PDF

The small GTPase MRAS is a broken switch.

Nat Commun

January 2025

Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.

Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer.

View Article and Find Full Text PDF

Anisotropic interactions for continuum modeling of protein-membrane systems.

J Chem Phys

December 2024

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions.

View Article and Find Full Text PDF

Implantable electrochemicals stand out as promising candidates for resolving peripheral nerve injuries. However, challenges persist in designing bioelectronic materials that mimic tissue due to modulus matching, conformal adhesion, and immune responses. Herein, we present a nerve-mimicking design rationale for biocompatible hydrogel-based electroceuticals with a tissue-like modulus, robust and conformal tissue adhesion, exceptional mechanical toughness, and efficient stress dissipation.

View Article and Find Full Text PDF

Actuators based on electrically conductive and hydrophilic two-dimensional (2D) TiCT MXene are of interest for fast and specific responses in demanding environments, such as chemical production. Herein, TiCT -based solvent-responsive bilayer actuators were developed, featuring a gradient polymer-intercalation structure in the active layer. These actuators were assembled using negatively charged pristine TiCT nanosheets as the passive layer and positively charged polymer-tethered TiCT as the active layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!