A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electric Shovel Teeth Missing Detection Method Based on Deep Learning. | LitMetric

Electric Shovel Teeth Missing Detection Method Based on Deep Learning.

Comput Intell Neurosci

State Grid Liaoning Electric Power Company Limited Material Branch Company, Shenyang, China.

Published: December 2021

Electric shovels are widely used in the mining industry to dig ore, and the teeth in shovels' bucket can be lost due to the tremendous pressure exerted by ore materials during operation. When the teeth fall off and enter the crusher with other ore materials, serious damages to crusher gears and other equipment happen, which causes millions of economic loss, because it is made of high-manganese steel. Thus, it is urgent to develop an efficient and automatic algorithm for detecting broken teeth. However, existing methods for detecting broken teeth have little effect and most research studies depended on sensor skills, which will be disturbed by closed cavity in shovel and not stable in practice. In this paper, we present an intelligent computer vision system for monitoring teeth condition and detecting missing teeth. Since the pixel-level algorithm is carried out, the amount of calculation should be reduced to improve the superiority of the algorithm. To release computational pressure of subsequent work, salient detection based on deep learning is proposed for extracting the key frame images from video flow taken by the camera installed on the shovel including the teeth we intend to analyze. Additionally, in order to more efficiently monitor teeth condition and detect missing teeth, semantic segmentation based on deep learning is processed to get the relative position of the teeth in the image. Once semantic segmentation is done, floating images containing the shape of teeth are obtained. Then, to detect missing teeth effectively, image registration is proposed. Finally, the result of image registration shows whether teeth are missing or not, and the system will immediately alert staff to check the shovel when teeth fall off. Through sufficient experiments, statistical result had demonstrated superiority of our presented model that serves more promising prospect in mining industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629673PMC
http://dx.doi.org/10.1155/2021/6503029DOI Listing

Publication Analysis

Top Keywords

teeth
15
based deep
12
deep learning
12
missing teeth
12
shovel teeth
8
teeth missing
8
mining industry
8
ore materials
8
teeth fall
8
detecting broken
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!