An electrical communication between the endothelial and smooth muscle cells via gap junctions, which provides the signaling pathway known as endothelium-dependent hyperpolarization (EDH), plays a crucial role in controlling the vascular tone. In this study, we investigated the role of gap junctions in the acetylcholine (ACh)-induced EDH-type dilation of rat retinal arterioles in vivo. The dilator response was evaluated by measuring the diameter of retinal arterioles. Intravitreal injection of gap junction blockers (18β-glycyrrhetinic acid and carbenoxolone) reduced the ACh-induced dilation of retinal arterioles. Moreover, the retinal arteriolar response to ACh was attenuated by 18β-glycyrrhetinic acid under treatment with a combination of N-nitro-L-arginine methyl ester (a nitric oxide (NO) synthase inhibitor; 30 mg/kg) and indomethacin (a cyclooxygenase inhibitor; 5 mg/kg). The NO- and prostaglandin-independent, EDH-related component of ACh-induced dilation of retinal arterioles was prevented by intravitreal injection of iberiotoxin, which inhibits large-conductance Ca-activated K channels. Furthermore, the combination of 18β-glycyrrhetinic acid and iberiotoxin produced greater attenuation in the EDH-related response than that by the individual agent. Treatment with 18β-glycyrrhetinic acid revealed no significant effect on NOR3 (an NO donor)-induced retinal vasodilator response. These results suggest that gap junctions contribute to the ACh-induced, EDH-type dilation of rat retinal arterioles in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b21-00547DOI Listing

Publication Analysis

Top Keywords

retinal arterioles
24
gap junctions
16
18β-glycyrrhetinic acid
16
dilation retinal
12
retinal
8
ach-induced edh-type
8
edh-type dilation
8
dilation rat
8
rat retinal
8
arterioles vivo
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!