Background: Chimeric antigen receptor (CAR) T cells have been successfully used in tumor immunotherapy due to their strong antitumor responses, especially in hematological malignancies such as B cell acute lymphoid leukemia. However, on-target off-tumor toxicity and poor persistence severely limit the clinical application of CAR-T cell therapy.
Methods: T-cell immunoglobulin mucin domain molecule 3 (TIM-3) was used to develop a second-generation 41BB CD19 CAR linked with a T3/28 chimera, in which truncated extracellular TIM-3 was fused with the CD28 transmembrane and cytoplasmic domains. The efficacy of T3/28 CAR-T cells was evaluated in vitro and in vivo.
Results: We demonstrated that the switch receptor T3/28 preserved the T phenotype, improved proliferative capacity, and reduced exhaustion of CAR-T cells, resulting in superior in vitro and in vivo antitumor activity in B lymphoma. Importantly, the switch receptor T3/28 substantially prolonged the persistence of CAR-T cells, and the interleukin-21/Stat3 axis probably contributed to the enhanced cytotoxicity of T3/28 CAR-T cells.
Conclusion: Overall, the T3/28 chimera significantly prolonged the persistence of CAR-T cells, and T3/28 CAR-T cells possessed potent antitumor activity in mice, shedding new light on potential improvements in adoptive T cell therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638458 | PMC |
http://dx.doi.org/10.1136/jitc-2021-003176 | DOI Listing |
Discov Oncol
January 2025
Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
B-cell non-Hodgkin lymphoma (B-NHL) is a highly heterogeneous group of lymphopoietic malignancies that account for 85% to 90% of all non-Hodgkin lymphomas. In recent years, CD19 Chimeric antigen receptor T (CAR T) cell immunotherapy has significantly improved the cure rate of B-NHL patients, but there are still some patients who cannot achieve remission after treatment, or relapse after remission. Therefore, it is of great importance to overcome the drug resistance of CD19 CAR T cells after B-NHL treatment and reduce the recurrence rate of CD19 CAR T cells after B-NHL treatment.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
Chimeric Antigen Receptor (CAR)-engineered T (CAR-T) cell therapy represents a highly promising modality within the domain of cancer treatment. CAR-T cell therapy has demonstrated notable efficacy in the treatment of hematological malignancies, solid tumors, and various infectious diseases. However, current CAR-T cell therapy is autologous, which presents challenges related to high costs, time-consuming manufacturing processes, and the necessity for careful patient selection.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Medicine, Shanghai University, Shanghai, China.
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
Background: Lung cancer, particularly non-small cell lung cancer (NSCLC), has high recurrence rates and remains a leading cause of cancer-related death, despite recent advances in its treatment. Emerging therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown promise but face significant challenges in targeting solid tumors. This study investigated the potential of combining receptor tyrosine kinase-like orphan receptor 1 (ROR1)-targeting CAR-T cells with ferroptosis inducers to promote ferroptosis of tumor cells and enhance anti-tumor efficacy.
View Article and Find Full Text PDFTransl Oncol
February 2025
Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!