Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803395PMC
http://dx.doi.org/10.1158/0008-5472.CAN-21-2843DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
nondestructive pathology
12
analysis prostate
12
prostate
8
risk stratification
8
deep learning-assisted
8
prostate biopsies
8
glandular features
8
computational pathology
8
stratification patients
8

Similar Publications

Previous studies have suggested an association between autoimmune diseases (AIDs) and the risk of prostate cancer (PCa). However, the causal relationship between AID and PCa remained unclear. The purpose of this study was to investigate the causal association between 3 common AIDs, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and ankylosing spondylitis (AS), and the risk of PCa.

View Article and Find Full Text PDF

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

This study applied cumulative sum (CUSUM) analysis to evaluate trends in operative time and blood loss, It aims to identify key milestones in mastering extraperitoneal single-site robotic-assisted radical prostatectomy (ss-RARP). A cohort of 100 patients who underwent ss-RARP, performed by a single surgeon at the First Affiliated Hospital of Guangzhou Medical University between March 2021 and June 2023, was retrospectively analyzed. To evaluate the learning curve, the CUSUM (Cumulative Sum Control Chart) technique was applied, revealing the progression and variability over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!