Characterization of Clinical Absorption, Distribution, Metabolism, and Excretion and Pharmacokinetics of Velsecorat Using an Intravenous Microtracer Combined with an Inhaled Dose in Healthy Subjects.

Drug Metab Dispos

Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory and Immunology (A.A.H., S.N., P.B.), Cardiovascular, Renal and Metabolism (L.W.), BioPharma Early Biometrics and Statistical Innovation, Data Science and AI (A.J.), and Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science (U.W.H., S.P.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Quotient Sciences, Nottingham, United Kingdom (S.S.); TNO, Leiden, The Netherlands (M.P.-G., R.A.F.d.L., E.R.V.); and Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (I.P.).

Published: February 2022

This open-label, single-period study describes the human absorption, distribution, metabolism, excretion, and pharmacokinetics of velsecorat (AZD7594). Healthy subjects received inhaled velsecorat (non-radiolabeled; 720 g) followed by intravenous infusion of carbon 14 (C)-velsecorat (30 g). Plasma, urine, and feces were collected up to 168 hours post-dose. Objectives included identification and quantification of velsecorat and its metabolites (i.e., drug-related material) in plasma and excreta, and determining the elimination pathways of velsecorat by measuring the rate and route of excretion, plasma half-life (t), clearance, volume of distribution and mean recovery of radioactivity. On average, 76.0% of administered C dose was recovered by the end of the sampling period (urine = 24.4%; feces = 51.6%), with no unchanged compound recovered in excreta, suggesting that biliary excretion is the main elimination route. Compared with intravenous C-velsecorat, inhaled velsecorat had a longer t (27 versus 2 hours), confirming that plasma elimination is absorption-rate-limited from the lungs. Following intravenous administration, t of C-drug-related material was longer than for unchanged velsecorat, and 20% of the C plasma content was related to unchanged velsecorat. The geometric mean plasma clearance of velsecorat was high (70.7 l/h) and the geometric mean volume of distribution at steady state was 113 l. Velsecorat was substantially metabolized via O-dealkylation of the indazole ether followed by sulfate conjugation, forming the M1 metabolite, the major metabolite in plasma. There were 15 minor metabolites. Velsecorat was well tolerated, and these results support the progression of velsecorat to phase 3 studies. SIGNIFICANCE STATEMENT: This study describes the human pharmacokinetics and metabolism of velsecorat, a selective glucocorticoid receptor modulator, evaluated via co-administration of a radiolabeled intravenous microtracer dose and a non-radiolabeled inhaled dose. This study provides a comprehensive assessment of the disposition of velsecorat in humans. It also highlights a number of complexities associated with determining human absorption, distribution, metabolism, and excretion for velsecorat, related to the inhaled route, the high metabolic clearance, sequential metabolite formation and the low intravenous dose.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.121.000632DOI Listing

Publication Analysis

Top Keywords

velsecorat
15
absorption distribution
12
distribution metabolism
12
metabolism excretion
12
excretion pharmacokinetics
8
pharmacokinetics velsecorat
8
intravenous microtracer
8
inhaled dose
8
healthy subjects
8
study describes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!