Statistical modeling of ultrasound signals related to the packing factor of wave scattering phenomena for structural characterization.

J Acoust Soc Am

Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Centre (CRCHUM), 900 St-Denis (suite R11.720), Montreal, Quebec, H2X 0A9, Canada.

Published: November 2021

AI Article Synopsis

  • The study introduces a theoretical framework that supports the use of the two-dimensional homodyned K-distribution model for simulating ultrasound RF signal echo envelopes, particularly when considering dependencies in scatterer positions.
  • Key statistical theorems such as the law of large numbers and Lyapounov's central limit theorem are employed, linking scatterer clustering parameters to packing factors that describe spatial organization in statistical physics.
  • Simulations confirm the framework's validity across various scatterer configurations, enabling potential structural information detection at scales smaller than the wavelength using statistical analysis, rather than relying solely on spectral analysis.

Article Abstract

The two-dimensional homodyned K-distribution has been widely used to model the echo envelope of ultrasound radio frequency (RF) signals in the field of medical ultrasonics. The main contribution of this work is to present a theoretical framework for supporting this model of the echo envelope and statistical models of the RF signals and their Hilbert transform in the case in which the scatterers' positions may be dependent. In doing so, the law of large numbers, Lyapounov's central limit theorem, and the Berry-Esseen theorem are being used. In particular, the proposed theoretical framework supports a previous conjecture relating the scatterer clustering parameter of the homodyned K-distribution to the packing factor W, which is related to the spatial organization of the scatterers, appearing in statistical physics or backscatter coefficient modeling. Simulations showed that the proposed modeling is valid for a number of scatterers and packing factors varying by steps of 2 from 1 to 21 and 1 to 11, respectively. The proposed framework allows, in principle, the detection of the structural information taking place at a scale smaller than the wavelength based solely on the statistical analysis of the RF signals or their echo envelope, although this goal was previously achieved based on the spectral analysis of ultrasound signals.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0007047DOI Listing

Publication Analysis

Top Keywords

echo envelope
12
ultrasound signals
8
packing factor
8
homodyned k-distribution
8
model echo
8
theoretical framework
8
signals
5
statistical
4
statistical modeling
4
modeling ultrasound
4

Similar Publications

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

Insights into Folding and Molecular Environment of Lyophilized Proteins Using Pulsed Electron Paramagnetic Resonance Spectroscopy.

Mol Pharm

January 2025

Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany.

There is still an insufficient understanding of how the characteristics of protein drugs are maintained in the solid state of lyophilizates, including aspects such as protein distances, local environment, and structural preservation. To this end, we evaluated protein folding and the molecules' nearest environment by electron paramagnetic resonance (EPR) spectroscopy. Double electron-electron resonance (DEER) probe distances of up to approximately 200 Å and is suitable to investigate protein folding, local concentration, and aggregation, whereas electron spin echo envelope modulation (ESEEM) allows the study of the near environment within approximately 10 Å of the spin label.

View Article and Find Full Text PDF

HIV, like other membrane-enveloped viruses, has protein spikes that include a fusion peptide (Fp) segment that binds the host cell membrane and plays a critical role in fusion (joining) viral and cell membranes. The HIV Fp is the ~23 N-terminal residues of the gp41 spike protein. Fp adopts intermolecular antiparallel β sheet structure when lipid fraction cholesterol ≈0.

View Article and Find Full Text PDF

Lytic Polysaccharide Monooxygenases (LPMOs) catalyze the oxidative depolymerization of polysaccharides at a monocopper active site, that is coordinated by the so-called histidine brace. In the past, this motif has sparked considerable interest, mostly due to its ability to generate and stabilize highly oxidizing intermediates during catalysis. We used a variety of advanced EPR techniques, including Electron Nuclear Double Resonance (ENDOR), Electron Spin Echo Envelope Modulation (ESEEM) and Hyperfine Sublevel Correlation (HYSCORE) spectroscopy in combination with isotopic labelling (N, H) to characterize the active site of the bacterial LPMO AA10A over a wide pH range (pH 4.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving the detection and evaluation of liver steatosis (fatty liver) using ultrasound images and advanced machine learning techniques like CNNs.
  • The research defined three fatty liver grades (normal, mild, moderate-to-severe) based on MRI measurements and analyzed 30 cases with various ultrasound-derived textures.
  • Results showed that using these techniques, liver steatosis could be classified with over 60% accuracy based on the parametric images created from echo-envelope statistics, indicating potential for reliable non-invasive diagnosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!