A nonlinear, fractional, surface wave equation with a spatial derivative of second order was developed by Kappler, Shrivastava, Schneider, and Netz [Phys. Rev. Fluids 2, 114804 (2017)] for propagation along an elastic interface coupled to a viscous incompressible liquid. Linear theory for the attenuation and dispersion was developed originally by Lucassen [Trans. Faraday Soc. 64, 2221 (1968)]. Kappler et al. introduced a fractional time derivative to account for the Lucassen wave attenuation and dispersion, and they included quadratic and cubic nonlinearity associated with compression of the elastic interface. Presented here is an integrated form of their time domain equation for progressive waves that is first order in the spatial derivative. Solutions of this evolution equation capture the main features of waveforms predicted by the full model equation of Kappler et al., especially the formation and propagation of shocks, while the evolution equation can be solved numerically with substantially less computational cost. Approximate analytical expressions obtained from the evolution equation for the nonlinear propagation speed and attenuation of a compression pulse reveal that a threshold phenomenon discussed by Kappler et al. is due to competition between quadratic and cubic nonlinearity associated with a lipid monolayer interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0006970 | DOI Listing |
Polymers (Basel)
December 2024
Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.
Heart Rhythm
January 2025
Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA. Electronic address:
Background: Spontaneously occurring life threatening reentrant arrhythmias result when a propagating premature beat encounters a region with significant dispersion of refractoriness. Although localized structural tissue heterogeneities and prescribed cell functional gradients have been incorporated into computational electrophysiological models, a quantitative framework for the evolution from normal to abnormal behavior that occurs via disease is lacking.
Objective: The purpose of this study was to develop a probabilistic modeling framework that represents the complex interplay of cell function and tissue structure in health and disease which predicts the emergence of premature beats and the initiation of reentry.
J Math Biol
January 2025
Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.
Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA.
Paleoneurology reconstructs the evolutionary history of nervous systems through direct observations from the fossil record and comparative data from extant species. Although this approach can provide direct evidence of phylogenetic links among species, it is constrained by the availability and quality of data that can be gleaned from the fossil record. Here, we sought to translate brain component relationships in a sample of extant Carnivora to make inferences about brain structure in fossil species.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, Brazil.
The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!