Diagnosing free electron laser (FEL) polarization is critical for polarization-modulated research such as x-ray FEL diffraction imaging and probing material magnetism. In an electron time-of-flight (eTOF) polarimeter, the flight time and angular distribution of photoelectrons were designed based on x-ray polarimetry for on-site diagnosis. However, the transverse position of x-ray FEL pulses introduces error into the measured photoelectron angular distribution. This work, thus, proposes a method of compensating transverse position jitters for the polarization by the eTOF polarimeter itself without an external x-ray beam-position monitor. A comprehensive numerical model is developed to demonstrate the feasibility of the compensation method, and the results reveal that a spatial resolution of 20 μm and a polarity improved by 0.02 are possible with fully polarized FEL pulses. The impact of FEL pulses and a method to calibrate their linearity are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0054804DOI Listing

Publication Analysis

Top Keywords

transverse position
12
fel pulses
12
x-ray fel
8
etof polarimeter
8
angular distribution
8
x-ray
5
fel
5
numerical study
4
study transverse
4
position monitor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!