A rapid, high voltage capacitor charging power supply (CCPS) based on a third order resonant converter topology has been proposed, analyzed, and simulated using the PSpice software, and as a proof of concept, a prototype of the 6.0 kV, 6.0 A CCPS is also developed. High charging power, low resonant current, and high pulse repetition rate were targeted in the design. In this paper, ac analysis for the calculation of impedance and resonant frequency, and frequency dependence on current gain, and the steady state analysis of the proposed scheme have been studied and presented. The performance is analyzed by simulating the circuit for two values of load capacitances. The simulation and prototype results show linear charging of the load for both values of load capacitances. The charging times of 1.47 and 0.97 ms have been achieved for load capacitances of 1.5 and 1.0 µF, respectively. The performance of the LLC topology has been compared with a conventionally used series resonant scheme. A high charging power of 18.4 kJ/s has been achieved. The topology shows a faster charging rate by ∼36% in comparison with the series LC resonant topology. The results of the analysis match with the simulation and prototype results, which confirms that the proposed scheme is suitable for rapid and reliable CCPS applications.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0064900DOI Listing

Publication Analysis

Top Keywords

charging power
16
load capacitances
12
rapid high
8
high voltage
8
voltage capacitor
8
capacitor charging
8
power supply
8
based third
8
third order
8
order resonant
8

Similar Publications

The magnetically suspended flywheel energy storage system (MS-FESS) is an energy storage equipment that accomplishes the bidirectional transfer between electric energy and kinetic energy, and it is widely used as the power conversion unit in the uninterrupted power supply (UPS) system. First, the structure of the FESS-UPS system is introduced, and the working principles at different working states are described. Furthermore, the control strategy of the FESS-UPS is developed, and the switch oscillation of the FESS-UPS system between the charging and discharging states is analyzed.

View Article and Find Full Text PDF

Optimized Interface Engineering Enhances Carrier and Phonon Scattering for Superior Thermoelectric Performance in Yb-Filled Skutterudites.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.

View Article and Find Full Text PDF

Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization.

View Article and Find Full Text PDF

The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.

View Article and Find Full Text PDF

Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.

J Med Imaging (Bellingham)

January 2025

U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.

Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).

Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!