CD19-CAR T cell therapy has evolved into the standard of care for relapsed/refractory B cell acute lymphoblastic leukemia (ALL); however, limited persistence of the CAR T cells enables tumor relapse for many patients. To gain a deeper understanding of the molecular characteristics associated with CAR T cell differentiation, we performed longitudinal genome-wide DNA methylation profiling of CD8 CD19-CAR T cells post-infusion in ALL patients. We report that CAR T cells undergo a rapid and broad erasure of repressive DNA methylation reprograms at effector-associated genes. The CAR T cell post-infusion changes are further characterized by repression of genes (e.g., TCF7 and LEF1) associated with memory potential and a DNA methylation signature (e.g., demethylation at CX3CR1, BATF, and TOX) demarcating a transition toward exhaustion-progenitor T cells. Thus, CD19-CAR T cells undergo exhaustion-associated DNA methylation programming, indicating that efforts to prevent this process may be an attractive approach to improve CAR T cell efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800370PMC
http://dx.doi.org/10.1016/j.celrep.2021.110079DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
cd19-car t cells
12
t cells undergo
12
car t cell
12
methylation programming
8
acute lymphoblastic
8
lymphoblastic leukemia
8
car t cells
8
dna
5
methylation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!