Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intraluminal lymphatic valves (LVs) contribute to the prevention of lymph backflow and maintain circulatory homeostasis. Several reports have investigated the molecular mechanisms which promote LV formation; however, the way in which they are suppressed is not completely clear. We show that the forkhead transcription factor FOXO1 is a suppressor of LV formation and maintenance in lymphatic endothelial cells. Oscillatory shear stress by bidirectional flow inactivates FOXO1 via Akt phosphorylation, resulting in the upregulation of a subset of LV-specific genes mediated by downregulation of a transcriptional repressor, PRDM1. Mice with an endothelial-specific Foxo1 deletion have an increase in LVs, and overexpression of Foxo1 in mice produces a decrease in LVs. Genetic reduction of PRDM1 rescues the decrease in LV by Foxo1 overexpression. In conclusion, FOXO1 plays a critical role in lymph flow homeostasis by preventing excess LV formation. This gene might be a therapeutic target for lymphatic circulatory abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2021.110048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!