Objectives: To develop a prediction model of spontaneous ureteral stone passage (SSP) using machine learning and logistic regression and compare the performance of the two models. Indications for management of ureteral stones are unclear, and the clinician determines whether to wait for SSP or perform active treatment, especially in well-controlled patients, to avoid unwanted complications. Therefore, suggesting the possibility of SSP would help make a clinical decision regarding ureteral stones.
Methods: Patients diagnosed with unilateral ureteral stones at our emergency department between August 2014 and September 2018 were included and underwent non-contrast-enhanced computed tomography 4 weeks from the first stone episode. Predictors of SSP were applied to build and validate the prediction model using multilayer perceptron (MLP) with the Keras framework.
Results: Of 833 patients, SSP was observed in 606 (72.7%). SSP rates were 68.2% and 75.6% for stone sizes 5-10 mm and <5 mm, respectively. Stone opacity, location, and whether it was the first ureteral stone episode were significant predictors of SSP. Areas under the curve (AUCs) for receiver operating characteristic (ROC) curves for MLP, and logistic regression were 0.859 and 0.847, respectively, for stones <5 mm, and 0.881 and 0.817, respectively, for 5-10 mm stones.
Conclusion: SSP prediction models were developed in patients with well-controlled unilateral ureteral stones; the performance of the models was good, especially in identifying SSP for 5-10-mm ureteral stones without definite treatment guidelines. To further improve the performance of these models, future studies should focus on using machine learning techniques in image analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635399 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260517 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!