Microcombs-optical frequency combs generated in coherently driven nonlinear microresonators-have attracted significant attention over the last decade. The ability to generate two such combs in a single resonator device has, in particular, enabled a host of applications from spectroscopy to imaging. Concurrently, novel comb generation techniques such as synchronous pulsed driving have been developed to enhance the efficiency and flexibility of microcomb generation. Here, we report on the first, to the best of our knowledge, experimental demonstration of dual-microcomb generation via synchronous pulsed pumping of a single microresonator. Specifically, we use two electro-optically generated pulse trains derived from a common continuous wave laser to simultaneously drive two orthogonal polarization modes of an integrated silica ring resonator, observing the generation of coherent dissipative Kerr cavity soliton combs on both polarization axes. Thanks to the resonator birefringence, the two soliton combs are associated with different repetition rates, thus realizing a dual-microcomb source. To illustrate the source's application potential, we demonstrate proof-of-concept spectroscopic measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.443153 | DOI Listing |
We demonstrate polarization multiplexed dissipative Kerr solitons in an on-chip silicon nitride micro-resonator. In our experiment, TE- and TM-polarized solitons can be individually generated and controlled, thanks to their weak mutual interaction as the result of sufficiently different repetition rates and orthogonal polarization states. Furthermore, we find that TE- and TM-polarized solitons usually exhibit uncorrelated time jitters.
View Article and Find Full Text PDFMicrocombs-optical frequency combs generated in coherently driven nonlinear microresonators-have attracted significant attention over the last decade. The ability to generate two such combs in a single resonator device has, in particular, enabled a host of applications from spectroscopy to imaging. Concurrently, novel comb generation techniques such as synchronous pulsed driving have been developed to enhance the efficiency and flexibility of microcomb generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!