One of the world's most widely grown crops is corn. Crop loss due to diseases has a major economic effect, putting the food supply in jeopardy. In many parts of the world, lack of infrastructure still slows disease diagnosis. In this context, effective detection of corn leaf diseases is necessary to limit any unfavorable impacts on the yield. This research has been carried out on the corn leaf images, having three classes of diseases and one healthy class, collected from web resources by using the densely connected convolutional neural networks (CNNs). In this work, VGG16, a variant of CNN, is investigated to classify the infected and healthy leaves. We conduct four different sets of experiments using pretrained VGG16 as a classifier, feature extractor, and fine-tuner. To improve our results, Bayesian optimization is used to choose optimal values for hyperparameters, and transfer learning is explored to fine-tune and reduce the training time of the proposed models. In comparison with earlier proven methods, transfer learning on VGG16 produced better results by leveraging a test accuracy of more than 97% while requiring less training time.

Download full-text PDF

Source
http://dx.doi.org/10.1089/big.2021.0218DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
learning vgg16
8
bayesian optimization
8
corn leaf
8
training time
8
hyperparameter optimization
4
optimization transfer
4
vgg16
4
vgg16 disease
4
disease identification
4

Similar Publications

Background: Artificial intelligence (AI)-based clinical decision support systems (CDSS) have been developed for several diseases. However, despite the potential to improve the quality of care and thereby positively impact patient-relevant outcomes, the majority of AI-based CDSS have not been adopted in standard care. Possible reasons for this include barriers in the implementation and a nonuser-oriented development approach, resulting in reduced user acceptance.

View Article and Find Full Text PDF

Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

View Article and Find Full Text PDF

Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.

Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.

View Article and Find Full Text PDF

Balance is crucial for various athletic tasks, and accurately assessing balance ability among elite athletes using simple and accessible measurement methods is a significant challenge in sports science. A common approach to balance assessment involves recording center of pressure (CoP) displacements using force platforms, with various indicators proposed to distinguish subtle balance differences. However, these indicators have not reached a consensus, and it remains unclear whether these analyses alone can fully explain the complex interactions of postural control.

View Article and Find Full Text PDF

Personalized cancer drug treatment is emerging as a frontier issue in modern medical research. Considering the genomic differences among cancer patients, determining the most effective drug treatment plan is a complex and crucial task. In response to these challenges, this study introduces the Adaptive Sparse Graph Contrastive Learning Network (ASGCL), an innovative approach to unraveling latent interactions in the complex context of cancer cell lines and drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!