Purpose: A new type of electronic dosimeter is presented, capable of discerning between the doses of gamma photons and neutrons in a mixed beam as found in boron neutron capture therapy (BNCT). We introduce a real-time dosimeter based on a thick gate field oxide field effect transistor (FOXFET) covered with a neutron converter layer containing gadolinium.

Methods: To sensitize the FOXFET dosimeter to neutron fluxes, a converter layer containing gadolinium oxide particles embedded in photoresines was deposited over the sensor surface. Mixed neutron-gamma field configurations with different neutron energy spectra were used to assess the FOXFET response, considering different thicknesses of the neutron converter layer.

Results: The total gamma sensitivity of the devices resulted to be 43 mV/Gy. The responses of sensors with different converter layer thicknesses irradiated with different neutron spectra are simulated using GEANT4 code. The response to photons is not significantly modified with thin conversion layers when used in water medium.

Conclusions: A real-time dosimeter comprising a pair of FOXFET sensors-only one of them with a gadolinium neutron converter layer-allows the simultaneous measurement of gamma dose and neutron flux during BNCT irradiations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.15385DOI Listing

Publication Analysis

Top Keywords

neutron converter
16
converter layer
16
neutron
9
field oxide
8
gadolinium oxide
8
real-time dosimeter
8
converter
6
neutron-gamma dosimetry
4
dosimetry bnct
4
field
4

Similar Publications

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Supernova Axions Convert to Gamma Rays in Magnetic Fields of Progenitor Stars.

Phys Rev Lett

November 2024

Berkeley Center for Theoretical Physics, University of California, Berkeley, California 94720, USA and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

It has long been established that axions could have been produced within the nascent proto-neutron star formed following the type II supernova SN1987A, escaped the star due to their weak interactions, and then converted to gamma rays in the Galactic magnetic fields; the nonobservation of a gamma-ray flash coincident with the neutrino burst leads to strong constraints on the axion-photon coupling for axion masses m_{a}≲10^{-10}  eV. In this Letter, we use SN1987A to constrain higher mass axions, all the way to m_{a}∼10^{-3}  eV, by accounting for axion production from the Primakoff process, nucleon bremsstrahlung, and pion conversion along with axion-photon conversion on the still-intact magnetic fields of the progenitor star. Moreover, we show that gamma-ray observations of the next Galactic supernova, leveraging the magnetic fields of the progenitor star, could detect quantum chromodynamics axions for masses above roughly 50  μeV, depending on the supernova.

View Article and Find Full Text PDF
Article Synopsis
  • Art and materials innovation have been linked throughout history, but modern materials science can make it harder for artists to access advanced materials.
  • Artist Kimsooja collaborated with the Wiesner Lab at Cornell University to create a unique iridescent coating for her large art installation, "A Needle Woman: Galaxy Is a Memory, Earth is a Souvenir."
  • The project not only included detailed material characterization but also aimed to inspire collaboration among materials science, the arts, and architecture, showcasing the potential of innovative materials.
View Article and Find Full Text PDF

Production of Branched Alkanes by Upcycling of Waste Polyethylene over Controlled Acid Sites of SO/ZrO-AlO Catalyst.

Angew Chem Int Ed Engl

November 2024

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Branched alkanes, which enhance the octane number of gasoline, can be produced from waste polyethylene. However, achieving highly selective production of branched alkanes presents a significant challenge in the upcycling of waste polyethylene. Here, we report a one-pot process to convert polyethylene into gasoline-range hydrocarbons (C-C) with yield of 73.

View Article and Find Full Text PDF

Radionuclides' Dispersion from Coal-Fired Brick Kilns: Geo-Environmental Processes, Potential Risks and Management.

Arch Environ Contam Toxicol

November 2024

Geological Survey of Bangladesh, Segunbaghicha, Dhaka, 1000, Bangladesh.

In order to investigate the distributions and possible dispersion mechanism(s) of naturally occurring radioactive materials (NORMs: Ra, Th, and K) from coal-based brick kilns, a systematic set (n = 60) of coal, ash, surface-soil, and subsurface soil samples were analyzed. High-quality analytical data of U, Th and K obtained from HPGe detector and TRIGA Mark-II research reactor-based neutron activation analysis were converted to the corresponding radioactivities. Average (n = 10) radioactivities of Ra, Th, and  K in coal samples were 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!