To accomplish the deceptively simple task of perceiving the size of objects in the visual scene, the visual system combines information about the retinal size of the object with several other cues, including perceived distance, relative size, and prior knowledge. When local component elements are perceptually grouped to form objects, the task is further complicated because a grouped object does not have a continuous contour from which retinal size can be estimated. Here, we investigate how the visual system solves this problem and makes it possible for observers to judge the size of perceptually grouped objects. We systematically vary the shape and orientation of the component elements in a two-alternative forced-choice task and find that the perceived size of the array of component objects can be almost perfectly predicted from the distance between the centroids of the component elements and the center of the array. This is true whether the global contour forms a circle or a square. When elements were positioned such that the centroids along the global contour were at different distances from the center, perceived size was based on the average distance. These results indicate that perceived size does not depend on the size of individual elements, and that smooth contours formed by the outer edges of the component elements are not used to estimate size. The current study adds to a growing literature highlighting the importance of centroids in visual perception and may have implications for how size is estimated for ensembles of different objects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648053PMC
http://dx.doi.org/10.1167/jov.21.13.1DOI Listing

Publication Analysis

Top Keywords

component elements
20
size
12
perceived size
12
centroids component
8
visual system
8
retinal size
8
perceptually grouped
8
size estimated
8
global contour
8
elements
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!