AI Article Synopsis

  • The paper discusses the design and fabrication of three innovative electrochemical measurement cells using screen-printed electrode chips (SPECs), highlighting their specific applications in flow injection, thin-layer, and batch techniques.
  • Each cell has unique features, including an acrylic base and cover, ensuring easy electrical connections, containment of the SPEC to prevent damage, compatibility with various SPECs, and excellent sealing, with the flow cell allowing for customization and visual inspection.
  • The thin-layer cell enables near-ideal voltammetry, while the versatile universal batch cell caters to a wide range of sample volumes and conditions, also providing novel methods for advanced electrochemical analysis.

Article Abstract

In the present paper, the design, fabrication, and analytical applications of three novel cells for flow injection, thin-layer, and batch electrochemical measurements using screen-printed electrode chips (SPECs) are described. Each cell consisted of an acrylic base and a transparent acrylic cover. The essential construction feature of each cell base was a cavity to accommodate the SPEC, whereas the construction features of the clear acrylic cover determined the cell shape and its function. The presented cells offered several common advantages, which include (i) convenient electrical connection of the SPEC to any potentiostat without the need for special cables, (ii) the SPEC was completely contained within the cell body, which eliminated the risk of its breakage, (iii) suitable for use with a large number of commercially available SPECs, and (iv) excellent SPEC sealing. The flow cell offered additional advantages of convenient customization of the cell dead volume and convenient visual inspection of the surface and the vicinity of SPEs. The presented thin-layer cell is the first report on a dedicated cell which realized a near-ideal thin-layer steady-state voltammetry using SPECs. The universal batch cell (UBC) offered extreme versatility and proved suitable for all batch applications in sample volumes ranging from 25 μL to 40 mL with an optional controlled temperature and atmosphere. Moreover, a novel way to achieve stirred-solution chronoamperometry and hydrodynamic voltammetry using SPECs (with superior signal-to-noise ratios) using the UBC is described. Electrochemical measurements to demonstrate the merits and the applicability of all cells are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c04337DOI Listing

Publication Analysis

Top Keywords

cell
9
flow injection
8
injection thin-layer
8
thin-layer batch
8
electrochemical measurements
8
acrylic cover
8
voltammetry specs
8
development characterization
4
characterization novel
4
novel flow
4

Similar Publications

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Ewing's sarcoma of the head and neck: differential diagnosis, treatment and outcomes.

Curr Opin Otolaryngol Head Neck Surg

December 2024

Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, HBNI, Parel, Mumbai.

Purpose Of Review: Ewing's sarcoma is a small round-cell tumour typically arising in the bones, and only rarely affecting soft tissues. These are rarely seen in the head and neck comprising 1-9% of all cases, making management of these tumours a challenge. This review aims to review the current literature to update the current diagnostic and treatment options in head and neck Ewing's sarcoma.

View Article and Find Full Text PDF

Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis.

View Article and Find Full Text PDF

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!