In the present paper, the design, fabrication, and analytical applications of three novel cells for flow injection, thin-layer, and batch electrochemical measurements using screen-printed electrode chips (SPECs) are described. Each cell consisted of an acrylic base and a transparent acrylic cover. The essential construction feature of each cell base was a cavity to accommodate the SPEC, whereas the construction features of the clear acrylic cover determined the cell shape and its function. The presented cells offered several common advantages, which include (i) convenient electrical connection of the SPEC to any potentiostat without the need for special cables, (ii) the SPEC was completely contained within the cell body, which eliminated the risk of its breakage, (iii) suitable for use with a large number of commercially available SPECs, and (iv) excellent SPEC sealing. The flow cell offered additional advantages of convenient customization of the cell dead volume and convenient visual inspection of the surface and the vicinity of SPEs. The presented thin-layer cell is the first report on a dedicated cell which realized a near-ideal thin-layer steady-state voltammetry using SPECs. The universal batch cell (UBC) offered extreme versatility and proved suitable for all batch applications in sample volumes ranging from 25 μL to 40 mL with an optional controlled temperature and atmosphere. Moreover, a novel way to achieve stirred-solution chronoamperometry and hydrodynamic voltammetry using SPECs (with superior signal-to-noise ratios) using the UBC is described. Electrochemical measurements to demonstrate the merits and the applicability of all cells are also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c04337 | DOI Listing |
Elife
January 2025
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.
View Article and Find Full Text PDFCurr Opin Otolaryngol Head Neck Surg
December 2024
Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, HBNI, Parel, Mumbai.
Purpose Of Review: Ewing's sarcoma is a small round-cell tumour typically arising in the bones, and only rarely affecting soft tissues. These are rarely seen in the head and neck comprising 1-9% of all cases, making management of these tumours a challenge. This review aims to review the current literature to update the current diagnostic and treatment options in head and neck Ewing's sarcoma.
View Article and Find Full Text PDFEndocr Relat Cancer
January 2025
X Zheng, Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan.
The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!