Several diseases are associated with alterations of the B-cell compartment. Knowing how to correctly identify by flow cytometry the distribution of B-cell populations in the peripheral blood is important to help in the early diagnosis. In the accompanying article we describe how to identify the different B-cell subsets in the peripheral blood of healthy donors. Here we show a few examples of diseases that cause dysregulation of the B-cell compartment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299869PMC
http://dx.doi.org/10.1002/cyto.a.24518DOI Listing

Publication Analysis

Top Keywords

peripheral blood
12
b-cell compartment
8
comprehensive phenotyping
4
phenotyping human
4
human peripheral
4
blood lymphocytes
4
lymphocytes pathological
4
pathological conditions
4
conditions diseases
4
diseases associated
4

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Advances in Diagnosis, Treatment and Prognostic in Aortoiliac Occlusive Disease - A Narrative Review.

Port J Card Thorac Vasc Surg

January 2025

Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto; RISE@Health, Porto, Portugal.

Background: Aortoiliac disease (AID) is a variant of peripheral artery disease involving the infrarenal aorta and iliac arteries. Similar to other arterial diseases, aortoiliac disease obstructs blood flow through narrowed lumens or by embolization of plaques. AID, when symptomatic, may present with a triad of claudication, impotence, and absence of femoral pulses, a triad also referred as Leriche Syndrome (LS).

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Peripheral inflammatory markers (PIMs), such as C-reactive protein (CRP) or white blood cell count (WBC), have been associated with depression severity in meta-analyses and large cohort studies. However, in typically-sized psychoimmunology studies (N < 200) that explore associations between PIMs and neurobiological/psychosocial constructs related to depression and studies that examine less-studied PIMs (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!