Objective: Obtaining electronic patient data, especially from electronic health record (EHR) systems, for clinical and translational research is difficult. Multiple research informatics systems exist but navigating the numerous applications can be challenging for scientists. This article describes Architecture for Research Computing in Health (ARCH), our institution's approach for matching investigators with tools and services for obtaining electronic patient data.

Materials And Methods: Supporting the spectrum of studies from populations to individuals, ARCH delivers a breadth of scientific functions-including but not limited to cohort discovery, electronic data capture, and multi-institutional data sharing-that manifest in specific systems-such as i2b2, REDCap, and PCORnet. Through a consultative process, ARCH staff align investigators with tools with respect to study design, data sources, and cost. Although most ARCH services are available free of charge, advanced engagements require fee for service.

Results: Since 2016 at Weill Cornell Medicine, ARCH has supported over 1200 unique investigators through more than 4177 consultations. Notably, ARCH infrastructure enabled critical coronavirus disease 2019 response activities for research and patient care.

Discussion: ARCH has provided a technical, regulatory, financial, and educational framework to support the biomedical research enterprise with electronic patient data. Collaboration among informaticians, biostatisticians, and clinicians has been critical to rapid generation and analysis of EHR data.

Conclusion: A suite of tools and services, ARCH helps match investigators with informatics systems to reduce time to science. ARCH has facilitated research at Weill Cornell Medicine and may provide a model for informatics and research leaders to support scientists elsewhere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8690260PMC
http://dx.doi.org/10.1093/jamia/ocab266DOI Listing

Publication Analysis

Top Keywords

electronic patient
16
patient data
12
arch
9
architecture computing
8
computing health
8
clinical translational
8
obtaining electronic
8
informatics systems
8
investigators tools
8
tools services
8

Similar Publications

Bidirectional recurrent neural network approach for predicting cervical cancer recurrence and survival.

Sci Rep

December 2024

School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.

Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Prognostic role of aetiological agent vs. clinical pattern in candidates to lead extraction for cardiac implantable electronic device infections.

Sci Rep

December 2024

Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.

Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!