Gene co-expression networks (GCNs) provide multiple benefits to molecular research including hypothesis generation and biomarker discovery. Transcriptome profiles serve as input for GCN construction and are derived from increasingly larger studies with samples across multiple experimental conditions, treatments, time points, genotypes, etc. Such experiments with larger numbers of variables confound discovery of true network edges, exclude edges and inhibit discovery of context (or condition) specific network edges. To demonstrate this problem, a 475-sample dataset is used to show that up to 97% of GCN edges can be misleading because correlations are false or incorrect. False and incorrect correlations can occur when tests are applied without ensuring assumptions are met, and pairwise gene expression may not meet test assumptions if the expression of at least one gene in the pairwise comparison is a function of multiple confounding variables. The 'one-size-fits-all' approach to GCN construction is therefore problematic for large, multivariable datasets. Recently, the Knowledge Independent Network Construction toolkit has been used in multiple studies to provide a dynamic approach to GCN construction that ensures statistical tests meet assumptions and confounding variables are addressed. Additionally, it can associate experimental context for each edge of the network resulting in context-specific GCNs (csGCNs). To help researchers recognize such challenges in GCN construction, and the creation of csGCNs, we provide a review of the workflow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769892PMC
http://dx.doi.org/10.1093/bib/bbab495DOI Listing

Publication Analysis

Top Keywords

gcn construction
16
network construction
8
network edges
8
false incorrect
8
confounding variables
8
approach gcn
8
construction
6
network
5
gcn
5
addressing noise
4

Similar Publications

MiRNAs and lncRNAs are two essential noncoding RNAs. Predicting associations between noncoding RNAs and diseases can significantly improve the accuracy of early diagnosis.With the continuous breakthroughs in artificial intelligence, researchers increasingly use deep learning methods to predict associations.

View Article and Find Full Text PDF

Emotion recognition using multi-scale EEG features through graph convolutional attention network.

Neural Netw

December 2024

The school of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

Emotion recognition via electroencephalogram (EEG) signals holds significant promise across various domains, including the detection of emotions in patients with consciousness disorders, assisting in the diagnosis of depression, and assessing cognitive load. This process is critically important in the development and research of brain-computer interfaces, where precise and efficient recognition of emotions is paramount. In this work, we introduce a novel approach for emotion recognition employing multi-scale EEG features, denominated as the Dynamic Spatial-Spectral-Temporal Network (DSSTNet).

View Article and Find Full Text PDF

This study focuses on the northern scenic area of Changbai Mountain, aiming to evaluate the emergency evacuation capacity of the region in the context of geological disasters and to formulate corresponding improvement strategies. Due to the relatively small area of this region, difficulties in data acquisition, and insufficient precision, traditional models for evaluating emergency evacuation capacity are typically applied to urban built environments, with relatively few studies addressing scenic areas. To tackle these issues, this research employs the Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), which successfully resolves the problem of blurriness in remote sensing images and significantly enhances image clarity.

View Article and Find Full Text PDF

The diagnosis and analysis of major depressive disorder (MDD) faces some intractable challenges such as dataset limitations and clinical variability. Resting-state functional magnetic resonance imaging (Rs-fMRI) can reflect the fluctuation data of brain activity in a resting state, which can find the interrelationships, functional connections, and network characteristics among brain regions of the patients. In this paper, a brain functional connectivity matrix is constructed using Pearson correlation based on the characteristics of multi-site Rs-fMRI data and brain atlas, and an adaptive propagation operator graph convolutional network (APO-GCN) model is designed.

View Article and Find Full Text PDF

Correctly diagnosing Alzheimer's disease (AD) and identifying pathogenic brain regions and genes play a vital role in understanding the AD and developing effective prevention and treatment strategies. Recent works combine imaging and genetic data, and leverage the strengths of both modalities to achieve better classification results. In this work, we propose MCA-GCN, a Multi-stream Cross-Attention and Graph Convolutional Network-based classification method for AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!