Incinerated Bio-Medical Waste Ash (IBWA) is toxic waste material with broad potential (cancer, genetic risk, premature death, permanent disease) to inflict severe health damage for the atmosphere and humans. This waste is disposed of as landfill, which contaminates the underground water and environment. The effective way of disposal of IBWA is by utilizing it as a building material, which can reduce the hazardous toxic materials. The use of Geopolymer Concrete (GPC) combined with IBWA as a substitute for Ground Granulated Blast Furnace Slag (GGBS) has been researched for its ability to create a new type of Green Concrete. The physical and chemical properties were observed for the raw materials. IBWA was used at 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50% replacement by weight for GGBS. Mixing proportions were 1:2.21:3.48 respectively for GGBS, Manufacturing Sand (M-sand), and coarse aggregate. Fresh properties and mechanical properties were examined for all specimens. The findings show an increase in the setting time and flow of concrete and a decrease in density with improved utilization of IBWA. On the other hand, IBWA replacement for GGBS enhanced the mechanical properties. These results revealed that IBWA could be partially replaced as source material for Geopolymer Concrete. This research may contribute to the reduction of dangerous IBWA as a building material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2021.239 | DOI Listing |
J Hazard Mater
March 2024
Environmental Technology Division, CSIR, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
COVID-19 has aggravated the biomedical waste generation all over the world and the concern for its safe disposal is on the rise. The vast majority of healthcare systems employ incineration as their treatment method considering its agility to reduce the waste volume by up to 95-96% and high-temperature inactivation of infectious biological materials. However, incinerator emission is a significant contributor of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (dl-PCBs) according to various national inventories across the globe.
View Article and Find Full Text PDFWater Sci Technol
November 2021
Department of Civil Engineering, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh, India.
Incinerated Bio-Medical Waste Ash (IBWA) is toxic waste material with broad potential (cancer, genetic risk, premature death, permanent disease) to inflict severe health damage for the atmosphere and humans. This waste is disposed of as landfill, which contaminates the underground water and environment. The effective way of disposal of IBWA is by utilizing it as a building material, which can reduce the hazardous toxic materials.
View Article and Find Full Text PDFChemosphere
January 2022
CSIR, National Environmental Engineering Research Institute, Nagpur, 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India. Electronic address:
The healthcare community acknowledged that bio-medical wastes (BMWs) have reached a colossal level across the globe. The recent pandemic (COVID-19) has brought a deluge of contaminated waste which calls for an urgent need of treatment technology for its safe disposal. BMW generally undergoes a conservative treatment approach of incineration which in turn generates potentially toxic ash known as BMW ash.
View Article and Find Full Text PDFEnviron Pollut
May 2021
Department of Civil Engineering, Punjab Engineering College, Chandigarh, 160012, India. Electronic address:
COVID-19 induced pandemic situations have put the bio-medical waste (BMW) management system, of the world, to test. Sudden influx, of COVID-infected patients, in health-care facilities, has increased the generation of yellow category BMW (Y-BMW) and put substantial burden on the BMW-incineration units of India. This study presents the compromising situation of the BMW-incineration units of India, in the wake of COVID-19 pandemic, from 21st March 2020 to 31st August 2020.
View Article and Find Full Text PDFHosp Top
October 2020
Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India.
The study was conducted with the objective of leading a situational assessment of Pune city with regard to Bio medical waste management, exploring knowledge, attitude & practices (KAP) of healthcare workers, and identifying challenges of stakeholders. Results revealed 69.2% of the hospitals had a biomedical waste management facility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!