The series of GdCeGaAlO nanopowders doped with different concentrations of Ce ions were prepared by Pechini (sol-gel) and combustion methods. The structure and morphology of the powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. It was found that the synthesis method has a great impact on the morphology and, consequently, spectroscopic properties of the powders. Optical properties of the powders were examined using excitation, emission, and luminescence kinetic measurements. For all powders, persistent luminescence and emission decay processes were studied. The most intense luminescence was observed for the powder with 0.5 mol % of Ce synthesized using the combustion method and 1 mol % in the case of the sol-gel sample. The longest and brightest persistent luminescence was observed for the powders doped with 0.1 mol % (combustion) and 0.2 mol % of Ce ions (sol-gel). The thermoluminescence measurements were done for the powders prepared using different methods to understand the impact of the synthesis conditions on the number and depths of the traps involved in persistent luminescence. On the basis of spectroscopic measurements, the mechanism of persistent luminescence was constructed and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693176PMC
http://dx.doi.org/10.1021/acs.inorgchem.1c02239DOI Listing

Publication Analysis

Top Keywords

persistent luminescence
20
impact synthesis
8
synthesis method
8
properties powders
8
measurements powders
8
luminescence observed
8
luminescence
7
powders
6
persistent
5
method conventional
4

Similar Publications

Phagocytosis by macrophages decreases the radiance of bioluminescent Staphylococcus aureus.

BMC Microbiol

January 2025

Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.

Article Synopsis
  • The study investigates how the bioluminescence of Staphylococcus aureus changes when it is engulfed by macrophages, showing a reduction in light production compared to bacteria in culture.
  • The bacterial count remains stable during this process, but bioluminescence increases again when bacteria are released after macrophage cell death or when fresh macrophages are added.
  • These findings highlight the need to consider intracellular residency effects on bioluminescence when using imaging techniques to study infections in live animals.
View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (Φ) and large luminescence dissymmetry factors (g). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material.

View Article and Find Full Text PDF

Technological advancements have intensified the demand for effective counterfeiting protection. This work presents multi-level security features in a (Ca,Zn)TiO:Pr,Er phosphor. A dual doping strategy synergistically results in dynamically changing luminescence emission.

View Article and Find Full Text PDF

Multi-Dimensional Color Tunable Long Persistent Luminescence in Metal Halide-Based CPs Through Precise Manipulation of Electronic and Steric Effects.

Small

January 2025

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

Regulating strategies for long persistent luminescence (LPL) are always in high demand. Herein, a series of coordination polymers (CPs) (SUST-Z1-Z4) are fabricated using 1,10-phenanthroline derivatives involving different substituents (─H, ─CH, ─Cl, and ─Br) as ligands, respectively. Crystallographic data demonstrate that these CPs adopt alternating arrangements of cadmium halide chains and π-conjugated ligands.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!