Novel Quinic Acid Glycerates from Tussilago farfara Inhibit Polypeptide GalNAc-Transferase.

Chembiochem

Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.

Published: February 2022

The discovery of a bioactive inhibitor tool for human polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts), the initiating enzyme for mucin-type O-glycosylation, remains challenging. In the present study, we identified an array of quinic acid derivatives, including four new glycerates (1-4) from Tussilago farfara, a traditional Chinese medicinal plant, as active inhibitors of GalNAc-T2 using a combined screening approach with a cell-based T2-specific sensor and purified enzyme assay. These inhibitors dose-dependently inhibited human GalNAc-T2 but did not affect O-linked N-acetylglucosamine transferase (OGT), the other type of glycosyltransferase. Importantly, they are not cytotoxic and retain inhibitory activity in cells lacking elongated O-glycans, which are eliminated by the CRISPR/Cas9 gene editing tool. A structure-activity relationship study unveiled a novel quinic acid-caffeic acid conjugate pharmacophore that directs inhibition. Overall, these new natural product inhibitors could serve as a basis for developing an inhibitor tool for GalNAc-T2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202100539DOI Listing

Publication Analysis

Top Keywords

novel quinic
8
quinic acid
8
tussilago farfara
8
inhibitor tool
8
acid glycerates
4
glycerates tussilago
4
farfara inhibit
4
inhibit polypeptide
4
polypeptide galnac-transferase
4
galnac-transferase discovery
4

Similar Publications

Objective: Our research has pinpointed the gut microbiome's role in the progression of various pathological types of non-small cell lung cancer (NSCLC). Nonetheless, the characteristics of the gut microbiome and its metabolites across different clinical stages of NSCLC are yet to be fully understood. The current study seeks to explore the distinctive gut flora and metabolite profiles of NSCLC patients across varying TNM stages.

View Article and Find Full Text PDF

Many plants are reported to enhance cognition in amnesic-animal models. The metabolite profile of fruit methanolic extract (CDFME) was characterized by LC-QTOF-MS/MS, and its total phenolics content (TPC) and total flavonoids content (TFC) were determined. In parallel, its cognitive-enhancing effect on scopolamine (SCOP)-induced AD in rats was evaluated.

View Article and Find Full Text PDF

Melatonin (MT) serves an indispensable function in plant development and their response to abiotic stress. Although numerous drought-tolerance genes have been ascertained in wheat, further investigation into the molecular pathways controlling drought stress tolerance remains necessary. In this investigation, it was observed that MT treatment markedly enhanced drought resistance in wheat by diminishing malondialdehyde (MDA) levels and augmenting the activity of antioxidant enzymes POD, APX, and CAT compared to untreated control plants.

View Article and Find Full Text PDF

The intercropping of in pear orchards has important production value in improving the utilization rate and economic benefits of the orchard; however, there is little research on the intercropping model of pear-. In this study, metabolomics analysis found that compared with greenhouse cultivation, there were 104 and 142 metabolites significantly increased and decreased in the intercropping mode of , respectively. Among them, there was a significant accumulation of amino acids (phenylalanine, lysine, proline, citrulline, and ornithine), sugars (arabinitol and glucosamine), and organic acids (quinic acid, fumaric acid, and malic acid) related to the unique taste of in intercropping cultivation.

View Article and Find Full Text PDF

Structural and biochemical analyses reveal quinic acid inhibits DAHP synthase a key player in shikimate pathway.

Arch Biochem Biophys

January 2025

Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India. Electronic address:

Article Synopsis
  • The shikimate pathway is crucial for making aromatic amino acids but isn't found in animals, making its enzymes targets for new antibiotics.
  • Researchers investigated quinic acid (QA) as a potential inhibitor of the DAHPS enzyme from the bacteria Providencia alcalifaciens, finding that it binds similarly to phenylalanine and has comparable binding affinities.
  • QA also showed inhibitory effects on various bacterial species, suggesting it could be developed into a new antimicrobial agent targeting the shikimate pathway for treating infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!