Since numerous RNAs and RBPs prevalently localize to active chromatin regions, many RNA-binding proteins (RBPs) may be potential transcriptional regulators. RBPs are generally thought to regulate transcription via noncoding RNAs. Here, we describe a distinct, dual mechanism of transcriptional regulation by the previously uncharacterized tRNA-modifying enzyme, hTrmt13. On one hand, hTrmt13 acts in the cytoplasm to catalyze 2'-O-methylation of tRNAs, thus regulating translation in a manner depending on its tRNA-modification activity. On the other hand, nucleus-localized hTrmt13 directly binds DNA as a transcriptional co-activator of key epithelial-mesenchymal transition factors, thereby promoting cell migration independent of tRNA-modification activity. These dual functions of hTrmt13 are mutually exclusive, as it can bind either DNA or tRNA through its CHHC zinc finger domain. Finally, we find that hTrmt13 expression is tightly associated with poor prognosis and survival in diverse cancer patients. Our discovery of the noncatalytic roles of an RNA-modifying enzyme provides a new perspective for understanding epitranscriptomic regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922252PMC
http://dx.doi.org/10.15252/embj.2021108544DOI Listing

Publication Analysis

Top Keywords

regulating translation
8
trna-modification activity
8
htrmt13
6
dual role
4
role human
4
human trna
4
trna methyltransferase
4
methyltransferase htrmt13
4
htrmt13 regulating
4
translation transcription
4

Similar Publications

N-methyladenosine (mA) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The mA modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of mA modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer.

View Article and Find Full Text PDF

Ferroptosis and autophagy are closely associated with Alzheimer's disease (AD). Elevated ferric ion levels can induce oxidative stress and chronic inflammatory responses, resulting in brain tissue damage and further neurological cell damage. Autophagy in Alzheimer's has a dual role.

View Article and Find Full Text PDF

Background: Pancreatic enucleation is a reliable surgical method for treating benign and borderline pancreatic tumors; however, the incidence of postoperative pancreatic fistula (POPF) is high, especially when the tumor is close to the main pancreatic duct. This study aimed to reduce the incidence of pancreatic fistula by preoperative placement of pancreatic stents and to summarize our center's experience with this procedure.

Methods: From June 2020 to July 2023, patients diagnosed with benign or borderline pancreatic tumors at Renji Hospital were included.

View Article and Find Full Text PDF

A new human autologous hepatocyte/macrophage co-culture system that mimics drug-induced liver injury-like inflammation.

Arch Toxicol

December 2024

Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, Leipzig, Germany.

The development of in vitro hepatocyte cell culture systems is crucial for investigating drug-induced liver injury (DILI). One prerequisite for monitoring DILI related immunologic reactions is the extension of primary human hepatocyte (PHH) cultures towards the inclusion of macrophages. Therefore, we developed and characterized an autologous co-culture system of PHH and primary human hepatic macrophages (hepM) (CoC1).

View Article and Find Full Text PDF

cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!