Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here, we have explored the novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA. CLAMP binds thousands of sites genome-wide throughout early embryogenesis. Interestingly, CLAMP relocates to target promoter sequences across the genome when ZGA is initiated. Although there is a considerable overlap between CLAMP and Zelda binding sites, the proteins display distinct temporal dynamics. To assess whether CLAMP occupancy affects gene expression, we analyzed transcriptomes of embryos zygotically compromised for either clamp or zelda and found that transcript levels of many zygotically activated genes are similarly affected. Importantly, compromising either clamp or zelda disrupted the expression of critical segmentation and sex determination genes bound by CLAMP (and Zelda). Furthermore, clamp knockdown embryos recapitulate other phenotypes observed in Zelda-depleted embryos, including nuclear division defects, centrosome aberrations, and a disorganized actomyosin network. Based on these data, we propose that CLAMP acts in concert with Zelda to regulate early zygotic transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633140 | PMC |
http://dx.doi.org/10.1093/genetics/iyab107 | DOI Listing |
Mol Biol Cell
December 2024
Emory University Department of Biology, Atlanta, GA 30322, USA.
To ensure that the embryo can package exponentially increasing amounts of DNA, replication-dependent histones are some of the earliest transcribed genes from the zygotic genome. However, how the histone genes are identified is not known. The pioneer factor CLAMP regulates the embryonic histone genes and helps establish the histone locus body, a suite of factors that controls histone mRNA biosynthesis, but CLAMP is not unique to the histone genes.
View Article and Find Full Text PDFbioRxiv
December 2023
Emory University Department of Biology, Atlanta, GA 30322, USA.
To ensure that the embryo can package exponentially increasing amounts of DNA, replication-dependent histones are some of the earliest transcribed genes from the zygotic genome. However, how the histone genes are identified is not known. The pioneer factors Zelda and CLAMP collaborate at a subset of genes to regulate zygotic genome activation in Drosophila melanogaster and target early activated genes to induce transcription.
View Article and Find Full Text PDFElife
January 2023
Department of Molecular Biology, Princeton University, Princeton, United States.
In embryos, somatic versus germline identity is the first cell fate decision. Zygotic genome activation (ZGA) orchestrates regionalized gene expression, imparting specific identity on somatic cells. ZGA begins with a minor wave that commences at nuclear cycle (NC)8 under the guidance of chromatin accessibility factors (Zelda, CLAMP, GAF), followed by the major wave during NC14.
View Article and Find Full Text PDFGenetics
October 2021
Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here, we have explored the novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA.
View Article and Find Full Text PDFElife
August 2021
Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, United States.
During the essential and conserved process of zygotic genome activation (ZGA), chromatin accessibility must increase to promote transcription. is a well-established model for defining mechanisms that drive ZGA. Zelda (ZLD) is a key pioneer transcription factor (TF) that promotes ZGA in the embryo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!