This study aimed to test if differences in soil salinity, plant richness and diversity were significantly affected by habitat, site and distance from the seashore at three sandy and three rocky coastal sites in north-western Sardinia. Each site has been divided into three belts placed at an equal distance of 50 m from the shoreline. We measured soil salinity using a probe and vascular plants richness and diversity using linear transects at all sites. Average soil salinity varied from 0.115 g/l to 0.180 g/l; it was higher in the rocky habitats than in the sandy ones. A total of 21 species were found per transect/site at the rocky sites and 30 species per transect/site at the sandy sites, with an average of Shannon and Weaver's Diversity Index of 1.8 per each belt at each site. These data confirm that, also in the Mediterranean islands, there are coastal gradients of soil salinity from the seashore to inland areas and that also vascular plant richness and diversity are influenced by the distance from the sea. Soil salinity was strongly affected by the type of habitat, being average at the rocky coasts and negligible at the sandy shores. The site effect was not significant for both soil salinity and plant richness and diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8626409 | PMC |
http://dx.doi.org/10.3897/BDJ.9.e71247 | DOI Listing |
Mar Pollut Bull
January 2025
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan. Electronic address:
Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Purpose: This study explored how exogenous silicon (Si) affects growth and salt resistance in maize.
Methods: The maize was cultivated in sand-filled pots, incorporating varied silicon and salt stress (NaCl) treatments. Silicon was applied at 0, 2, 4, 6, and 8 mM, and salt stress was induced using 0, 60 and120 mM concentrations.
Sci Rep
January 2025
Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Kerman, Iran.
Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almeria, Almeria, España.
The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!