Arterial baroreceptors (BRs) play a vital role in the regulation of the cardiopulmonary system. What is known about how these sensors operate at the subcellular level is limited, however. Until recently, one afferent axon was considered to be connected to a single baroreceptor (one-sensor theory). However, in the lung, a single airway mechanosensory unit is now known to house many sensors (multiple-sensor theory). Here we tested the hypothesis that multiple-sensor theory also operates in BR units, using both morphological and electrophysiological approaches in rabbit aortic arch (in whole mount) labeled with Na/K-ATPase, as well as myelin basic protein antibodies, and examined microscopically. Sensory structures presented in compact clusters, similar to bunches of grapes. Sensory terminals, like those in the airways, formed leaf-like or knob-like expansions. That is, a single myelinated axon connected with multiple sensors forming a network. We also recorded single-unit activities from aortic baroreceptors in the depressor nerve in anesthetized rabbits and examined the unit response to a bolus intravenous injection of phenylephrine. Unit activity increased progressively as blood pressure (BP) increased. Five of eleven units abruptly changed their discharge pattern to a lower activity level after BP attained a plateau for a minute or two (when BP was maintained at the high level). These findings clearly show that the high discharge baroreceptor deactivates after over-excitation and unit activity falls to a low discharge sensor. In conclusion, our morphological and physiological data support the hypothesis that multiple-sensory theory can be applied to BR units.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632929 | PMC |
http://dx.doi.org/10.1038/s41598-021-02563-x | DOI Listing |
J Physiol
December 2024
Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Loss of cardiac physiological function following myocardial infarction (MI) is accompanied by neural adaptations in the baroreflex that are compensatory in the short term, but then become associated with long-term disease progression. One marker of these adaptations is decreased baroreflex sensitivity, a strong predictor of post-MI mortality. The relative contributions of cardiac remodelling and neural adaptation in the sensory, central brainstem and peripheral ganglionic loci to baroreflex sensitivity changes remain underexplored.
View Article and Find Full Text PDFJ Physiol
September 2024
Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
Microneurographic recordings of the human cervical vagus nerve have revealed the presence of multi-unit neural activity with measurable cardiac rhythmicity. This suggests that the physiology of vagal neurones with cardiovascular regulatory function can be studied using this method. Here, the activity of cardiac rhythmic single units was discriminated from human cervical vagus nerve recordings using template-based waveform matching.
View Article and Find Full Text PDFJ Interv Card Electrophysiol
November 2023
Centre of Postgraduate Medical Education, Department of Cardiology, Grochowski Hospital, Warsaw, Poland.
Background: The autonomic nervous system (ANS) plays a significant role in atrial fibrillation (AF). Catheter ablation (CA) affects the ANS balance. The assessment of baroreceptor (BR) function is an established method to measure parasympathetic activity; however, it has been rarely used in patients undergoing CA of AF.
View Article and Find Full Text PDFJ Cerebrovasc Endovasc Neurosurg
June 2024
Rancho Bernardo High School, San Diego, California, USA.
Objective: To assess whether local anesthetic infiltration could minimize the carotid baroreceptor reflex (CBR) which has an incidence after carotid artery stenting (CAS) that varies from 29% to 51%.
Methods: This retrospective single-center study included 51 patients (mean age, 70.47 years) who underwent CAS for carotid stenosis.
Am J Physiol Regul Integr Comp Physiol
November 2023
Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States.
The purpose of these experiments was to determine if the increase in vascular conductance following a single muscle contraction (50% of maximal voluntary contraction) (6 male and 6 female subjects) was altered during baroceptor loading and unloading. Rapid onset vasodilation (ROV) was determined by measuring brachial artery blood flow (Doppler ultrasound) and blood pressure (Finapress monitor). Brachial artery vascular conductance was calculated by dividing blood flow by mean arterial pressure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!